Conserving Land-Atmosphere Synthesis Suite (CLASS).

Hobeichi, S., G. Abramowitz and J. Evans
Journal of Climate, 33(5), 1821-1844, doi: 10.1175/JCLI-D-19-0036.1, 2020.


Accurate estimates of terrestrial water and energy cycle components are needed to better understand climate processes and improve models’ ability to simulate future change. Various observational estimates are available for the individual budget terms; however, these typically show inconsistencies when combined in a budget. In this work, a Conserving Land–Atmosphere Synthesis Suite (CLASS) of estimates of simulta- neously balanced surface water and energy budget components is developed. Individual CLASS variable datasets, where possible, 1) combine a range of existing variable product estimates, and hence overcome the limitations of estimates from a single source; 2) are observationally constrained with in situ measurements; 3) have uncertainty estimates that are consistent with their agreement with in situ observations; and 4) are consistent with each other by being able to solve the water and energy budgets simultaneously. First, available datasets of a budget variable are merged by implementing a weighting method that accounts both for the ability of datasets to match in situ measurements and the error covariance between datasets. Then, the budget terms are adjusted by applying an objective variational data assimilation technique (DAT) that enforces the simultaneous closure of the surface water and energy budgets linked through the equivalence of evapo- transpiration and latent heat. Comparing component estimates before and after applying the DAT against in situ measurements of energy fluxes and streamflow showed that modified estimates agree better with in situ observations across various metrics, but also revealed some inconsistencies between water budget terms in June over the higher latitudes. CLASS variable estimates are freely available via 5c872258dc183.

Key Figure

Figure 9. Monthly cycle of water budget variable aggregates from pre-DAT and CLASS compared with the observed streamflow over five Siberian basins

UNSW    This page is maintained by Jason Evans | Last updated 23 January 2018