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H I G H L I G H T S  

• Australian climate change services can use a regional climate model ensemble as the main data source. 
• A sparse matrix of a selected CMIP6 models and multiple regional climate models is outlined. 
• Climate sensitivity is considered, treating models outside the very likely range with care. 
• A storyline framework is used in model selection, ensuring different climate signals are captured.  
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A B S T R A C T   

A multi-scenario, multi-model ensemble of simulations from regional climate models is outlined to provide the 
core data source for a set of climate projections and a climate change service. A subset of realisations from CMIP6 
Global Climate Models (GCMs) are selected for downscaling by Regional Climate Models (RCMs) under a ‘sparse 
matrix’ framework using the CORDEX guidelines for Shared Socio-economic Pathways that feature low emissions 
(SSP1-2.6) and high emissions (SSP3-7.0). The subset excludes poor performing models, with performance 
assessed by the climatology over a large Indo-Pacific domain and an Australian-specific domain, the simulation 
of atmospheric circulation and teleconnections to major drivers, then incorporating other evaluation from the 
literature. The models are selected to be relatively independent by simply choosing one model from each ‘family’ 
where possible. The projected change in temperature and rainfall in climatic regions of Australia in the selected 
models are broadly representative of that from the whole CMIP6 ensemble, after deliberately treating models 
with very high climate sensitivity separately. A limited but carefully constructed ensemble will not represent 
statistically balanced estimates but can be used effectively under a ‘storylines’ style approach and can maximise 
representativeness within limits. The resulting ensemble can be used as a key data source for the future climate 
component of climate services in Australia. The ensemble will be used in conjunction with CMIP6 and large 
ensembles of GCM simulations as important context, and targeted ‘convective permitting resolution’ modelling, 
deep learning models and emulators for added insights to inform climate change planning in Australia.   

* Corresponding author. 
E-mail address: Michael.Grose@csiro.au (M.R. Grose).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2023.100368 
Received 8 August 2022; Received in revised form 14 February 2023; Accepted 11 April 2023   

mailto:Michael.Grose@csiro.au
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2023.100368
https://doi.org/10.1016/j.cliser.2023.100368
https://doi.org/10.1016/j.cliser.2023.100368
http://creativecommons.org/licenses/by/4.0/


Climate Services 30 (2023) 100368

2

Practical implications  

Climate services are now called on to include data and information 
about future projections, and this requires a core data source of 
model simulations to draw on. This ensemble of simulations 
should be consistent with and also complement the scientific 
assessment of multiple lines of evidence on climate change. To be 
useful in regional applications, it must provide locally relevant 
insights. Therefore, the ensemble needs to be scientifically cred
ible, as well as relevant at the spatial and temporal scales of in
terest. The CMIP ensembles of global climate models (GCMs) are 
internationally respected and credible for producing projections, 
but have coarse spatial resolution so have limitations in producing 
locally relevant information. Projections of extreme events and 
hazards are of strong interest, especially in Australia where they 
have severe impacts. Downscaling using regional climate models 
(RCMs) can ‘add value’ to GCM projections, but often faces limi
tations in terms of ensemble size due to production costs and can 
draw from only a restricted set of host models due to data 
demands. 

Here we present one strategy for selecting GCMs from CMIP6 for 
downscaling by RCMs to provide the core dataset for national 
climate projections for Australia that can underpin climate ser
vices for the coming years. The trade-off between ensemble size 
and resolution is addressed by employing concepts from the 
‘storyline’ approach, where the choice of models samples the 
major categories of potential climate futures and takes the 
emphasis off producing frequentist statistics of projected change. 
This means ensuring the major categories of change are repre
sented, such as warm and hot, wet and dry, for the major climate 
regions of the country, and for features than affect climate haz
ards, such as the shift in the boundary of circulation regimes. 
Consistency between RCMs, and with other regions in the world is 
attained by following CORDEX protocols. The implication of this 
strategy is that a large multi-model, multi-scenario ensemble of 
RCM simulations, rather than treating CMIP as the core data 
source, can provide the core data source for national climate 
projections in Australia for the first time. While the ensemble of 
RCM simulations at CORDEX resolution can form the core data 
source, it will need to be complemented by other sources in a 
coherent framework. These sources include providing the context 
from CMIP6, including models and concentration pathways not 
downscaled and insights from large ensembles, as well as finer 
scale modelling and other modelling from deep learning and 
emulators.   

Introduction 

Climate projections are information products of Earth’s climate into 
future decades and centuries, based on a set of scenarios describing 
plausible concentrations of future conditions, primarily atmospheric 
greenhouse gas (GHG) emissions. Projections rely heavily on outputs 
from global climate models (GCMs), which are typically of coarse spatial 
resolution (~100–200 km) that don’t resolve local scale geographic 
features and atmospheric processes, so don’t directly provide locally 
relevant information for all purposes. The dynamical downscaling of 
GCMs using higher resolution regional climate models (RCMs) offers the 
potential for regional-scale ‘added value’ - information at finer temporal 
and spatial scales - which, therefore, may provide more locally appli
cable climate information (Di Luca et al., 2013). The issue of added 
value from RCMs has been the topic for some debate (Lloyd et al., 2021), 
but a convincing case for new insights from downscaling is when there is 
both added value in the simulation of the current climate together with 
new detail about the climate change signal in the projections (Ciarlo 

et al., 2020), termed Realised Added Value (RAV) by Di Virgilio et al. 
(2020). The source of RAV may be the enhanced spatial resolution of 
features and their interactions with the parameterised physical pro
cesses in the simulation, which can be important factors in determining 
the climate change signal. These features include the effects of topog
raphy, vegetation and soil characteristics, land–water contrasts, and 
finer-scale processes in the atmosphere (e.g., convection), and the ocean 
if coupled regional modelling is used (e.g., ocean eddies); see Kota
marthi et al. (2021) and references therein. Higher spatial and temporal 
resolution is particularly useful when producing information on climate 
extremes and climate hazards relevant to regional and local scales. 

It is possible to use the added value and regional information from 
dynamical downscaling as part of a comprehensive set of climate 
projections and as a core part of the future climate component of a 
climate service. To do this, the structural and sampling uncertainty of 
climate model ensembles must be accounted for, and in the current 
context, this requires a systematic approach to using global and 
regional models (e.g., McGinnis and Mearns, 2021). A current standard 
for examining future climate projections (e.g., IPCC, 2021) is the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model 
database (Eyring et al., 2016) of climate simulations under the 
shared Socio-Economic Pathway (SSP) framework (Riahi et al., 2017). 
The SSPs are five narratives representing alternative plausible future 
scenarios, with various subsequent GHG concentration pathways. 
CMIP6 simulations for the SSPs can be used as an input into the 
downscaling performed by RCMs. Different RCMs may simulate 
different regional changes given the same GCM input, so a range of 
RCMs can be surveyed along with the range of GCMs. A large Multi- 
scenario Multi-model Ensemble (MME) of RCM experiments using 
multiple GCMs and SSPs is usable as a core part of climate projections, 
and not just in a complementary role to the GCMs. 

Such an MME is necessarily limited in size due to the large amount of 
computing resources needed to run dynamical downscaling. Therefore, 
trade-offs must be made and a subset of host GCMs, RCMs and SSPs must 
be selected, with a limit to the number of ensemble members that can be 
utilised. Other key decisions include the size of the spatial domains, 
spatial resolution, and the length of the simulations. Many decisions can 
now be standardised through international guidelines from the Coordi
nated Regional Climate Downscaling Experiment (CORDEX-CMIP6), 
such as the spatial domain, spatial resolutions, SSP priority order and 
some modelling details (CORDEX, 2021). There are advantages to 
following these international guidelines in terms of comparability to 
other domains around the world, the legitimacy bestowed by an inter
national program, and the ease of collaboration when using a common 
framework. This move to a coordinated program is similar to the move 
from ad hoc programs to CMIP for global modelling. However, even 
when following CORDEX guidelines, there are several key decisions 
remaining; primarily the choice of which GCMs and RCMs to use. 

A ‘sparse matrix’ approach to the GCM and RCM selection means that 
each GCM is downscaled by more than one RCM, but not every RCM 
needs to be run for each GCM which is the case with a ‘filled matrix’ 
approach (Mearns et al., 2012). A sparse matrix MME allows a wider 
range of GCMs to be sampled for a given number of RCM simulations 
compared to a filled matrix, but still ensures some estimation of the 
uncertainty from the RCM step. Given that the uncertainty space is 
larger from GCMs than RCMs (Abramowitz et al., 2019), the sparse 
matrix approach has an advantage. There are a range of constraints on 
RCM applications, mainly from the high computational cost of running 
RCMs at fine spatiotemporal scales over long time periods suitable for 
climate analyses. A sparse matrix can include every RCM that is avail
able to contribute and does not rely on the complete agreement of GCM 
selection by each RCM, so allows for a range of priorities to be consid
ered in its development. 

The CMIP6 contributions are not centrally planned, so it is an 
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‘ensemble of opportunity’. But there is the possibility of subsampling 
CMIP6 using a systematic strategy. Here we describe one strategy for the 
sub-selection of a group of CMIP6 GCMs for use in a sparse matrix 
CORDEX MME of RCMs for Australasia, along with some other key de
tails about the strategy behind the ensemble generation. This analysis is 
not exhaustive, and the recommendations are specific to an initial MME 
for CORDEX; other downscaling programs may have different needs or 
priorities. The analysis is also not rigid or final, so it can be built upon in 
future. 

GCM selection strategy 

There are three interrelated aspects to consider when selecting a 
subset of GCMs for dynamical downscaling: 1) performance of the 
GCMs, 2) independence of GCMs, and 3) the plausible uncertainty space 
of projected climate change produced by GCMs. Past studies have placed 
different emphases on each of the three elements, and how to combine 
them (e.g., Evans et al., 2014; Teichmann et al., 2021). An additional 
limitation is that not all modelling groups have published the sub-daily 
data for all CMIP6 models that many RCMs require. Limited Area Models 
(LAMs) participating in CORDEX-Australasia, including the Weather 
Research and Forecasting (WRF, Skamarock et al., 2008) system and the 
Bureau of Meteorology Atmospheric Regional Projections for Australia 
(BARPA, Su et al., 2022) require sub-daily inputs. This study follows the 
strategy of rejecting poor-performing models, then selecting a subset of 
those models that remain that are relatively independent and 

representatively sample the projected range of change of interest and 
have the data required to run RCMs, following previous studies (e.g., 
Evans et al., 2014). 

On the evaluation of GCM performance, we aim to reject models with 
a simulation of the historical climate that is poor enough to cast doubt on 
its future projection or is otherwise unsuitable. In this way, the strategy 
employed here differs from studies that aim to rank models by evalua
tion metrics and identify best performing models, as for example Desmet 
et al. (2022) present for southeast Asia. The aim of this study is to reject 
models that are likely to be unsuitable and retain for consideration all 
models that are likely to be suitable. However, suitability will inevitably 
depend on the purpose, and varies by geographic region. Also, the 
approach assumes that the evaluation of the current climate is useful to 
inform projections, which may be vulnerable to the effects of model 
tuning and compensating errors when applied in the RCM framework (e. 
g., Di Luca et al., 2021). Also, there are many dimensions on which to 
assess suitability, the range of metrics available is typically not 
comprehensive, some metrics correlate with others, observation data
sets vary in quality and there are often not clear objective criteria or 
thresholds to determine what is acceptable. 

There are open questions about the appropriate categories of metrics 
to use and the spatial domain over which to assess surface climate sta
tistics for GCM selection. Detailed statistics on surface variables from 
within the target domain can utilise high-quality observed datasets and 
are potentially useful indicators of the GCM simulation of the local 
climate (e.g., Syktus et al., 2022), assuming this translates quite directly 

Fig. 1. A flow chart schematic of the CMIP6 model selection process, including the number of models at each stage.  
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from the GCM into the RCM simulation. However, the surface climate 
over the target domain may be seen as largely a function of the RCM 
simulation, so that it is more important to evaluate the climate at the 
RCM boundary (e.g., Moalafhi et al., 2016) or the relevant large-scale 
features and processes. These features may include global energy bal
ance, sea surface temperature patterns, atmospheric circulation fea
tures, modes of variability and so on. The evaluation at the local and 
broad scales may be consistent or could conceivably differ in some cases. 
There is also an open question of how to incorporate historical trends 
(regional or large-scale) in evaluation. 

Here, we take a simple and practical approach to GCM selection, see 
the schematic in Fig. 1. We examine a selection of evaluation metrics, 
including surface climate statistics, climate processes and modes of 
variability. Evaluation of surface climate statistics is focussed mainly on 
a large spatial domain over the Indo-Pacific region. This domain in
cludes broad-scale features that commonly have model biases associated 
with them, such as the edge of the Western Pacific Warm Pool (WPWP) 
where models commonly have the so-called ‘cold-tongue bias’, the 
Intertropical Convergence Zone (ITCZ) where models may have the 
‘double ITCZ’ bias, and the temperature gradient from the equator to the 
Southern Ocean, where models can have a warm bias. The domain also 
contains large rainfall features such as the southern edge of the Asia- 
Australia monsoon and the South Pacific Convergence Zone (SPCZ). A 
selection of large-scale circulation features, climate drivers and modes of 
variability are assessed. Daily data are also examined for some extremes, 
including for the projected changes in the annual maximum of daily 
rainfall, with a general comparison presented of those results in relation 
to the projected changes in mean values. The metrics were weighted by 
variable or category before weighting between variables, to avoid over- 
weighting metrics that are highly correlated (following Rupp et al., 
2013). 

The results from this evaluation of broad spatial scale surface vari
ables and climate drivers are then compared with analyses from the 
literature, including assessments of the GCM performance within the 
Australian domain (including extremes) and past trends. The results are 
compared, and the model list is reduced. We reject the poorest per
forming models rather than select a small group of highest performers. 
This will likely exclude the most unsuitable GCMs for the many uses of 
the MME, while retaining models that may be acceptable despite not 
performing best, thus retaining as much of the range of plausible future 
states as possible for consideration. 

On the independence of GCMs, an ensemble with a small number of 
members may not sufficiently span model uncertainty if the models are 
closely related. Certain modelling choices or representations may 
dominate the GCM subsample and effectively provide redundant infor
mation in the final ensemble, potentially leading to overconfidence in a 
particular set of outcomes. There are various approaches to measuring 
independence and accounting for this issue (Abramowitz et al., 2019), 
but the overall goal for any GCM selection is to minimise the effects of 
model dependence by not treating the outputs of highly related models 
as independent samples. Independence in the MME can be addressed in 
various ways in practice, and one simple method is to select models that 
are above some threshold of independence from each other (e.g., Pennell 
& Reichler, 2011; Herger et al., 2018), or only selecting one model from 
each ‘family’ of models (Leduc et al., 2016; Abramowitz et al., 2019). As 
with GCM performance, model independence can be specific to the re
gion, time period, variable and metric. We take a simple approach to 
independence suggested by Abramowitz et al. (2019), by ensuring that 
we select models that are not highly related (e.g., by sharing model 
components); we do not weight independence further. We place a much 
higher emphasis on the representativeness of the change signal. 

On representativeness, the aim is to draw a representative sample of 
plausible climate change signals from the ensemble of models used as 
input (the host ensemble). This again is domain-specific and can be 
purpose-specific, and in some contexts might be considered an aspect of 
model dependence. One strategy is to reproduce similar statistics (e.g., 

mean and spread) in the sub-sample as in the full ensemble for key 
climate quantities (e.g., mean temperature and precipitation) for an 
appropriate spatial domain of interest. As for evaluation, there is no 
objective set of criteria to determine the appropriate spatial domain to 
assess representativeness, from the smallest domain of interest (e.g., a 
city) to larger scale climate zones (e.g., the monsoons or mid-latitude 
region). This is again a matter of judgement and depends on the pur
pose of the ensemble. 

Rather than aim to reproduce the same distribution of projected 
change as the host ensemble (e.g., the mean and spread), it may be 
appropriate to deliberately draw from a constrained range of change 
signal. Rejecting models that evaluate poorly may do this, but also 
choosing selectively from non-rejected models may be appropriate if the 
sample of projected changes in the host ensemble are known to be 
skewed. In CMIP6, there is an uneven distribution of climate sensitivity 
values compared to an independent assessment (Sherwood et al., 2020), 
including many models outside the likely range (2.5 to 4 ◦C) and some 
outside the very likely range (2 to 5 ◦C), but still considered possible 
(IPCC, 2021). There is a strong case to not draw evenly across the CMIP6 
spread in climate sensitivity (and therefore warming projection, as they 
are strongly correlated), and especially to limit sampling of the very high 
end of the range of climate sensitivities (Hausfather et al., 2022). In 
response, we select a limited number of models from the group above the 
likely range of Equilibrium Climate Sensitivity (ECS, also known as 
Effective Climate Sensitivity when measured using the standard 
method) as possible, ensure a model representative of the low end of the 
likely range in ECS is selected, and treat models with ECS above the very 
likely range as a ‘low probability high impact’ case, noting that it is not 
possible to rule out ECS values > 5 ◦C (IPCC, 2021). 

Given the limited number of possible simulations, we don’t attempt 
to sample the CMIP6 uncertainty space in a statistically detailed way. 
Rather, we sample the main categories of change in surface temperature 
and rainfall for eight broad climatic regions of Australia, including warm 
and hot, wet and dry. We use the change in these variables between the 
two 50-year periods of 1950–1999 and 2050–2099 under SSP3-7.0 as 
being representative of a strong climate change signal, with reduced 
effects of internal variability compared to using 20-year periods. Given 
the model ensemble will be used to examine hazards, we assess the 
simulation and change signal in some features known to affect the 
projection of coastal hazards: the movement of the subtropical ridge and 
monsoon shear line, which correlates with changes to the latitude of 
storms. 

The study aims to choose 5–8 GCMs from the models that provide 
sub-daily data but allow for further GCMs with sub-daily data available 
to be downscaled if resources permit. Models that don’t provide sub- 
daily data but can be used in RCMs that do not need it are also noted. 
The selection is compared to assessments from other studies, and a 
sparse matrix is devised, noting all modelling will follow the CORDEX 
guidelines (CORDEX, 2021). 

Detailed methods 

All methods and choices are consistent with CORDEX guidelines, 
including the selection of SSPs with the two highest priorities being 
SSP1-2.6 and SSP3-7.0, followed by SSP2-4.5 and SSP5-8.5. The COR
DEX guidelines also specify the Australasian spatial domain (Fig. 2) and 
spatial resolution (12 or 25 km), however, we note that further regional 
modelling for smaller sub-domains and at finer resolution will use these 
CORDEX simulations as input. 

A set of 50 CMIP6 models are considered, with historical simulations 
available at the time of analysis, and one simulation from each is used in 
evaluation, typically r1i1p1f1 (Table 1). However, at the time of writing 
only 35 of the 50 models provide monthly and daily data for Historical 
and the two highest priority SSPs. A significant constraint is that only 18 
of the 50 models provide sub-daily outputs for historical and these SSP 
simulations. 
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Analysis of regional averages is generally done on the eight large 
‘cluster’ regions used in CSIRO and BoM (2015), see Fig. 2. Four broad 
‘super-clusters’ are also considered, broadly similar to the IPCC refer
ence regions (Iturbide et al. 2020). These are Eastern Australia (EA), 
Northern Australia (NA), Southern Australia (SA) and the centre, 
referred to as Rangelands (R), also see Fig. 2. 

Evaluation 

Observed datasets used for evaluation of the historical simulations 
are the global rainfall from the Global Precipitation Climatology Project, 
GPCPv2.3 (Adler et al., 2017), sea surface temperature from Hadley 
Centre Sea Ice and Sea Surface Temperature dataset HadISST1.1 (Rayner 
et al., 2003), atmospheric pressure and circulation from ERA5 (Hersbach 
et al., 2020) and high-quality gridded climate data of surface air tem
perature (SAT) and precipitation (PR) from the Australian Gridded 
Climate Data (AGCD) of Evans et al. (2020) and Jones et al. (2009). 

An assessment of only the first realisation is used, and it is assumed 
that this is broadly indicative of the model simulation across multiple 
members, as has been done previously (e.g., Grose et al., 2020; Di Vir
gilio et al., 2022). Evaluation is used to find generally poor performing 
models and is not used to make fine distinctions at the level of differ
ences between ensemble members. Also, a large domain and long tem
poral periods are used in the evaluation of the mean climate, to be less 
sensitive to phases of internal variability. Model data were regridded to 
a 1.5◦ lat/lon grid (the mean resolution of CMIP6) using bilinear 

interpolation for analysis that requires this consistency, otherwise 
analysis was performed on the original grid. The evaluation is focussed 
mainly on the mean climate in terms of SAT and PR over the large Indo- 
Pacific domain and over the whole of Australia (Fig. 2), seasonal mean 
sea level pressure (MSLP) distribution, as well as atmospheric circula
tion, teleconnections and variability. Australian multi-year meteoro
logical drought is assessed compared to AGCD from estimates of the 50- 
and 100-year Average Recurrence Interval 5 and 10-year drought totals 
using a probabilistic approach based on Srikanthan and McMahon 
(1986). 

The evaluation in this study is then compared to and used jointly 
with material from the literature. These other studies include the par
allel per-GCM assessments of mean and extreme climate and daily dis
tributions of temperature and rainfall in the Australian domain by Di 
Virgilio et al. (2022) and the Kling-Gupta (Gupta et al., 2009) skill scores 
for annual cycle and seasonal temperature and rainfall characteristics 
calculated by Syktus et al. (2022). The evaluation also considers the past 
trends in global temperature in Tokarska et al. (2020), the assessment of 
Australian heatwaves in Hirsch et al. (2021), and the simulation of the 
Asia-Australia monsoons in Narsey et al. (2020). Also, a poor simulation 
of important features in the western Pacific are expected to have flow-on 
effects on Australia, so models are also flagged here from the assessment 
of the edge of the west Pacific warm pool (WPWP) by Grose et al. (2020), 
and the simulation of the South Pacific Convergence Zone in Narsey 
et al. (in press). 

After weighting models for each category, a simple system of model 

Fig. 2. Map of domains used, top shows the CORDEX Australasia domain and large Indo-Pacific domain used to assess surface air temperature (SAT) and precip
itation (PR) spatial distributions, and the domain used to calculate the M Score for MSLP and S score, colour scale indicates SST from HadISST; bottom left shows the 
four ‘supercluster’ regions (NAU Northern Australia, R Rangelands, SAU Southern Australia, EAU Eastern Australia), bottom right shows the eight cluster regions 
(MN Monsoonal North, WT Wet Tropics, R Rangelands, SSWF Southern and Southwestern Flatlands, MB Murray Basin, CS Central Slopes, EA Eastern Australia, SS 
Southern Slopes). 
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rejection is used, generally where models falling in the bottom third of 
models for the majority of tests in a category are deemed to fail that 
category, consistent with Rupp et al. (2013) and Di Virgilio et al. (2022). 
Models that are flagged in two of the three categories are chosen for 
rejection and models flagged in one are used with lower priority. 

Mean climate 
Four different scores of the spatial distribution in the mean clima

tology for both SAT and PR are calculated and compared, and one score 
also evaluates Mean Sea Level Pressure (MSLP). The first two scores are 
spatial correlation and Root Mean Square Error (RMSE) compared to 

Table 1 
Details of 50 CMIP6 models considered in this study and ranking for evaluation metrics for each model. The number in brackets indicates the number of realisations 
with daily data available, models highlighted in blue have daily sub-data available for all SSPs required. Numbered cells show the ranking of the model based on the 
average of tests within that category, binary (0/1) cells show the results of a threshold test, X marks where a rejection was made due to the number of tests failed, or 
egregious fails, even if more categories were not in the bottom third (see methods). Last column shows the final tally for each model: dark red = reject, light red = one 
flag, blue = insufficient evaluation, white = no flags.  
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observations for two six-month seasons (June-Nov and Dec-May) over a 
large Indo-Pacific domain (Fig. 2). The third score is the M statistic 
(Watterson, 1996), calculated with TAS and PR over the Australian land 
area relative to the higher resolution observed dataset of AGCD, and for 
MSLP over the 105–162 ◦E and 8–46 ◦S domain relative to ERA5. The 
fourth is the S score (Taylor, 2001) of SAT and PR was derived over a 
domain of 10 to 46 ◦S and 111 to 158 ◦E, using the formula: 

S =
4(1 + R)4

(
σf + 1/σf

)2
(1 + R0)

4  

where σf is the ratio of pattern standard deviations of the simulated SATs 
and the reference SAT (from ERA5), R is the corresponding pattern 
correlation between the simulated and reference SATs and R0 is the 
maximum attainable correlation (taken as 1 in our calculation). 

The seasonal correlations and RMSE were averaged to make one 
score for SAT and one for PR, then weighted equally with M Statistic 
averaged for TAS, PR and MSLP and the S score averaged for TAS and 
PR. These evaluation metrics are not all independent, with evaluation of 
the same variable (e.g., all scores use TAS), and of calculations (e.g., the 
S score uses spatial correlation as one component). To reduce the 
redundancy of non-independent scores, we focus on one score from each 
method (making a total of four scores), averaging scores for different 
seasons first, and using only the final M score and S score (not the 
components). Then models in the bottom third for two or more of the 
four score metrics were flagged for possible rejection. 

Atmospheric circulation, teleconnections and variability 
Mean atmospheric circulation relevant to Australian climate in the 

models was assessed using a series of indices of specific features. Indices 
of the mean boundary between dominant zonal wind regimes were 
calculated, specifically the mean position and intensity of the Subtrop
ical Ridge (STR) of pressure along a meridional transect in eastern 
Australia following the methods in Grose et al. (2015), and the mean 
position of the monsoon shear line in northern Australia defined by 925 
hPa winds following methods in Colman et al. (2011). These features are 
not only relevant to precipitation, but also the latitude that storms affect 
coastlines in Australia. 

The mean position and strength of the subtropical jet and the storm 
track over an Australian region in summer (DJF) and winter (JJA) were 
calculated using methods outlined in Grose et al. (2017). 

The simulation of the El Niño Southern Oscillation (ENSO) and the 
Indian Ocean Dipole (IOD) and the teleconnection to Australian rainfall 
for the four regions were assessed using methods described in Grose 
et al. (2020). This evaluation compared the temporal correlation be
tween indices of each driver and winter-spring rainfall variability to the 
relationship in observations. The correlation in each region was aver
aged to give a single score. In addition, the models with poor historical 
trends in the Southern Annular Mode (SAM) were flagged. 

As for mean climate, seasonal scores of each type were averaged. The 
ranking of models for the simulation of drought were also combined, 
creating a total of seven scores. Models with four or more scores in the 
bottom third of all models were flagged for possible rejection. Excep
tions to this ‘bottom third’ rule are where absolute thresholds are used 
for the STR (model is outside observed range for the location of the peak 
STR) and monsoon shear line (location is > 2◦ latitude from observed). 

Independence 

The simple approach to model independence of choosing no more 
than one model from each ‘family’ from Abramowitz et al. (2019) was 
employed where possible, as outlined in the strategy section. The phy
logeny analysis and minimum generalised distance threshold were taken 
from Brunner et al. (2020). Given the main selection must be made from 
models with sub-daily data available and many of these are related, this 

means selecting only one model from the six ‘families’ with more than 
one model represented (Table 2). However, given that the model list is 
already restricted due to sub-daily data availability (from 50 to 18 
models) and the rejection of some models (from 18 to 7 models with 2 
more with flags), it is only possible to pick 6 independent models. An 
additional model CESM2 is also retained, even though it is considered to 
be in the same family as NorESM2, since the family connection is weaker 
than some other instances, including an entirely different ocean and 
biogeochemistry model, as well as different aerosol physics and chem
istry (Seland et al., 2020). Note that the ACCESS-ESM1.5 model is within 
the UKMO family but is assessed to be more independent from the others 
at a level greater than the generalised distance threshold (due at least in 
part to the code version of the major ocean and atmosphere components 
used in this model). 

Representativeness 

Global warming trends were used as a line of evidence in the eval
uation stage, but are also considered here in terms of representativeness, 
along with the Equilibrium Climate Sensitivity (ECS) value associated 
with each model. ECS estimates are taken from Zelinka (2022). The 
CMIP6 spread has an over-representation of the warm end of global 
warming, largely related to the climate sensitivity, as mentioned in the 
strategy section. This issue is exacerbated somewhat when considering 
only the 18 models with sub-daily data available (Fig. 3). Modelled high 
climate sensitivity generally also leads to high warming in Australia, so 
the model spread in projected temperature is not consistent with that 
expected from an independent assessment of temperature change. There 
are limited strategies that can be used in response to this issue when 
choosing a small subset of models from the group of 18, given the lack of 
models with required data, excluding rejected models and accounting 
for independence. So here a practical approach is taken by selecting as 
few models with ECS above the likely range as possible (but this space is 
still over represented), and deliberately including models’ representa
tive of other parts of the likely range. Models with ECS above the very 
likely range of climate sensitivity can be examined as a ‘low probability, 
high impact’ outcome, and taking care when using this as part of an 
ensemble. 

After considering climate sensitivity, the subset of models is chosen 
to be representative of the CMIP6 spread in the climate change signal in 
two ways. The first is the projected change in mean annual temperature 
and precipitation over the eight cluster regions of Australia for a strong 
climate change signal (SSP3-7.0) over the whole century (1950–1999 to 
2050–2099). These changes in the mean are expected to correlate with 
projected changes in associated extremes such as heatwaves and time in 
drought. The 50-year periods were chosen to show the change signal 
with reduced influence from natural variability. An additional analysis 
of the change between 20-year periods 1995–2014 to 2040–2059 and 
2080–2099 was examined, to assess the consistency of the trends 
through time periods of interest for applications. 

The second assessment is of the change in the circulation features 
known to affect the change in the latitude of coastal storms – the sub
tropical ridge and the monsoon shear line. Here, we aim to include at 
least one model that projects each direction of change in latitude of these 
features in CMIP6 models (poleward, little change or equatorward). 

Climate extremes are of strong interest, but the purpose of this study 
is to inform the choices for dynamical downscaling, rather than the 
projection of extreme events by the GCMs themselves. RCMs inherit only 
broad-scale climate features from GCMs, then produce their own simu
lation of extremes at the regional scale. Therefore, only a general 
overview of the projected change in rainfall extremes relative to the 
mean warming is given here as general context, using the monthly 
maximum values of daily rainfall (rx1day) from the ETCCDI (Expert 
Team on Climate Change Detection and Indices). Data were obtained for 
many of the GCMs assessed in this study from the Copernicus Climate 
Data Store, as documented in Sillmann et al. (2013) and Kim et al. 
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(2020). Projected changes are given as for mean change: for the eight 
‘cluster’ regions for the SSP3-7.0 emissions pathway over the whole 
century (1950–1999 to 2050–2099). 

Results 

Evaluation 

The four scores evaluating the mean climatology in seasonal SAT and 
PR (and one of MSLP) do not show clear groupings of models, but rather 
a spectrum of scores (Figs. 4–6). Spatial correlations of temperature over 

this large domain are all very high with little distinction between 
models, so model ranking is determined more by RMSE for this analysis 
(Fig. 4a). The model ranking for PR has only broad similarity to SAT, 
with some notable differences in the ordering (Fig. 4b). The S scores of 
annual SAT and PR (Fig. 5) and the M Statistic of SAT, PR and MSLP 
(Fig. 6) over Australian domains also show a spectrum of scores. There 
are some similarities in the model ranking from the evaluations over a 
large domain and those for S score and M statistics over Australia, but 
also some interesting contrasts between the two rankings. The differ
ences are most likely reflecting the different spatial domains. For 
example, MIROC6 ranks highly over the large domain, but poorly over 

Table 2 
The group of 18 models with sub-daily data available, the colour code over the name and the letter in the Family column indicates their ‘family’ identified in Brunner 
et al. (2020), ECS denotes the Equilibrium Climate Sensitivity (ECS) of the model with those above the assessed likely range (light red) and above the very likely range 
(dark red). Subsequent columns indicate the flag from model evaluation by category of mean climate, drivers and other evidence, the group based on evaluation flags 
and selection for use in downscaling. For equivalent information for all 50 models, see Table S1.  

* Other Evidence: Warming denotes global temperature trends from Tokarska et al. (2020), DV denotes evaluation within Australia by Di Virgilio et al. (2022), Syk 
denotes evaluation by Syktus et al. (2022), WPWP denoted West Pacific Warm Pool from Grose et al. (2020), SPCZ denotes South Pacific Convergence Zone from 
Narsey et al. (in press), HW denotes heatwaves from Hirsch et al. (2021). 

Fig. 3. The equilibrium climate sensitivity 
(ECS) of CMIP6 models, and subsets of 
models compared to the independent 
assessment reported in IPCC (2021) as grey 
shading. Bars show count of models (in 
0.25 ◦C bins) for 53 CMIP6 models assessed 
by Zelinka (2022) as a reflection of the whole 
ensemble, the 18 models providing sub-daily 
data, and the final selected 7 models, circles 
and stems show the mean and standard de
viation of the three model groups, the extra 
‘low probability, high impact’ case of UK- 
ESM1-0-LL is marked by a red star.   
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Australia specifically. All scores are much higher for SAT than for PR, 
indicating the models’ superior performance in simulating SAT. Model 
ranking for the M statistic of MSLP over a wider domain is broadly 
similar to the ranking from SAT and PR, with some scatter (Fig. 6). Some 
models had a lower ranking for MSLP evaluation despite high ranking 
for SAT (e.g., IPSL-CM5A-INCA, MRI-ESM2-0). 

The ranking of evaluation of ENSO and IOD teleconnection to 
Australian rainfall (averaged for four regions) showed some similarity to 
mean climate evaluation, but some differences (Table S1). For example, 
some models were ranked highly for both (e.g., GFDL-ESM4, NotESM2- 
MM), some lower for both (e.g., INM-CM5-0, NESM3) but some models 
were in the top two thirds for mean climate but bottom third for this 

teleconnection (e.g., EC-Earth3-Veg). Results for the simulation of the 
subtropical jet and the storm track (Table S1), where the ranking of 
many models followed other scores (e.g., CAS-ESM2-0 scored poorly, the 
ACCESS models scored well), but with some exceptions (e.g., MRI- 
ESM2-0 was lower ranked). In addition, three models with a poor his
torical trend in SAM were flagged (CIESM, CNRM-CM6-1-HR, IPSL- 
CM6A-LR), and also four models with a simulation of the subtropical 
ridge that is outside observations (E3SM-1–1, EC-Earth3-Veg-LR, IPSL- 
CM5A2-INCA, MIROC6), see Table S1. 

Model rejection 
Of the tests performed in this paper, 16/50 models fall into the 

Fig. 4. Correlation and RMSE over the large Indo-Pacific domain (Fig. 2) in the two six-month seasons during the baseline period for TOP: surface air temperature, 
and BOTTOM: precipitation (an absence of bars/lines indicates data were insufficient to calculate). Models are ordered by overall performance across the four 
metrics, with the highest performers on the right. Note correlations are very high due to the large domain used. 
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Fig. 5. The S scores for surface air temperatures and precipitation averaged over the Australian region (46oS-10oS, 111oE-158oE, Fig. 2), plotted in increasing order 
of the average score value. 

Fig. 6. As for Fig. 4, but showing the M Statistic for SAT, PR MSLP over the Australian region, and the average of scores.  
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bottom third of two or more out of four test categories for mean climate 
(TAS, PR and MSLP), and 16/50 fall in the bottom third of three or more 
out of seven test categories for circulation and driver evaluation tests or 
were above the chosen threshold for the test (see Table 1). Eleven 
models appear on both lists. Please note seven models are missing from 
the list due to unavailable data for some analyses. After incorporating 
other evidence and results from the literature, 17 out of 50 models are 
flagged for potential rejection, with a further 7 in the non-preferred list 
with at least one flag (plus some models with insufficient evaluations to 
assess fully). 

Of the subset of 18 models with sub-daily data, seven models are 
rejected for use and two more are flagged as not preferred, leaving a 
group of up to 9 preferred models (Table 2). These groupings are found 
through the flags from mean climate (three models flagged), drivers and 
circulation (seven models flagged), then evidence from other studies and 
the literature. Flags from other studies come from Di Virgilio et al. 
(2022) and Syktus et al. (2022). Flags from other evidence include 
CanESM5 due to excessive past global temperature trends (Tokarska 
et al. 2020), MPI-ESM1-2-HR for the bias in the WPWP (Grose et al., 
2020), MPI-ESM1-2-LR for SPCZ (Narsey et al., in press) as well as 
CanESM5 and BCC-CSM2-HR with low relative bias skill scores for 
heatwave metrics for Australasia specifically (Hirsch et al., 2021). 

Several poor performers of mean climatology and daily distributions 
in SAT and PR within the Australian or sub-domains identified by Di 
Virgilio et al. (2022) or Syktus et al. (2022) are consistent with the 
findings here, including INM-CM4-8, MIROC6 and NESM3. However, 
some others are not consistent with this assessment, and flags are 
assigned to three additional models when both studies agree on poor 
performance: CMCC-CM2-SR5, IPSL-CM6A-LR, and NorESM2-LM. 
These models also scored poorly on some tests here (e.g., see 
Figs. 4–6), but weren’t quite over the threshold set. Similarly, some 
models performed well in both the broader and Australian domains (e. 
g., GFDL-ESM4). 

Independence 

Of the 19 models with sub-daily data, 13 can be identified as falling 
into one of six families (Table 2). The 10 non-rejected and non-flagged 
models include the two EC-Earth models (EC-Earth3, EC-Earth3-Veg), 
two in the CESM family (CESM2 and NorESM2-MM), and two in the 
UK family (ACCESS-CM2 and UKESM1-0-LL). Only one from each group 
can be chosen as the first priority, so as to avoid models that are closely 
related. This results in a possibility of seven preferred models. Despite 
the same name, the two ACCESS models are independent above the 
threshold given in Brunner et al. (2020), see Mackallah et al. (2022) for 
details. 

Representativeness 

Restrictions of sub-daily data availability, evaluation and indepen
dence leaves a choice of up to only seven models. Representativeness is 
now examined to make the final selections and to illustrate the ensemble 
characteristics. 

First the ECS value is considered. The INM-CM4-8 and INM-CM5- 
0 models with ECS below that are considered possible in Sherwood 
et al. (2021) are already rejected due to poor evaluation. Two models in 
the list of ten (Table 2) have an ECS above the very likely range (CESM2 
and UKESM1-0-LL), and ACCESS-CM2 has high ECS, so downscaling of 
these models can be considered for the exploration of ‘low proba
bilityhigh impact’ outcomes of high warming. However, CESM2 in fact 
has a lower projected warming for Australia specifically than ACCESS- 
CM2 and other models (Fig. 7). CNRM-ESM2-1 alsohas high ECS (but 
within the very likely range) and strong warming in Australia. The ECS of 
the EC-Earth3 models are also above the likely range. NorESM2-MM has 
ECS at the low end of the likely range. Here, CESM2 and NorESM2-MM 
are selected to bracket the range of sensitivity, however ACCESS-CM2 

and NorESM2-MM in fact bracket the range in Australian warming. 
UK-ESM1-0-LL is considered for a high warming case (CanESM5 is 
rejected). 

The spread in the projected change in SAT and PR for SSP3-7.0 be
tween 1950–1999 and 2050–2099 is broad for all Australian ‘cluster’ 
regions using all available ensemble members from CMIP6 (Fig. 7). The 
results are similar when considering 20-year periods 1995–2014 and 
2080–2099, except there are more realisations available (EC-Earth3 
simulations other than r1i1p1f1 start in 1970) and the results are noisier 
due to natural variability (Fig. S1). 

The spread in projected change is the result of including different 
numbers of ensemble members from different models and the large 
numbers of models with high climate sensitivity (and some with very 
low), with equal weight as other simulations. For example, the distinct 
cluster of projections at the high end of the SAT range for SSP3-7.0 are 
the multiple realisations of CanESM5 and UKESM1-0-LL (Fig. 7), which 
we deliberately separate from the main selection. As mentioned above, 
ACCESS-CM2 is included to represent the high warming range, and 
NorESM2-MM the low end. 

ACCESS-ESM1.5 is consistently the driest projection for every cluster 
region, so can be used as an illustrative example of a very dry storyline/ 
scenario for Australia (Fig. 7). Interestingly, ACCESS-ESM1.5 is not 
much cooler than ACCESS-CM2, despite the difference in climate 
sensitivity due to regional enhancement of the warming signal related to 
rainfall reduction. The model was available to be re-run and sub-daily 
data saved for any ensemble member above r3, and we selected 
r6i1p1f1 as it is close to the ensemble mean change in all clusters 
(Fig. 7). This realisation also illustrates a dry scenario between the 
recent past and 2050 due to the strong drying signal together with 
natural variability, especially in eastern Australia (Fig. S2). 

In contrast to ACCESS-ESM1.5, the two EC-Earth3 models produce a 
wet projection for most regions (Fig. 7). Either model could be used a 
representative case for a wet future, but both models can’t be chosen due 
to independence reasons. EC-Earth3 has a more consistently wet pro
jection than EC-Earth3-Veg through time and space, including for 
eastern Australian regions, so is selected in preference to the Veg version 
(Fig. S3). The first realisation (r1i1p1f1) of EC-Earth3 has the data 
required for downscaling and is in the wetter range of projected change 
from the 57 ensemble members (Fig. S3). 

Together with the selection of four models to represent high and low 
warming, wet and dry projections, three other models are included in 
the subset (CMCC-ESM2, CNRM-ESM2-1, CESM2) that have projected 
changes in the mid-range of the ensemble and are not outliers for any 
region. This creates a selection of seven models. 

As a check of how the selection represents the range from CMIP6 
more broadly, we compare the projected change in these seven with the 
range in all models, excluding models with very high and very low ECS 
(shown as box plots in each panel in Fig. 7). The ranges broadly match in 
most instances, and the individual model points are distributed 
throughout the uncertainty space reasonably evenly and reach most 
corners. Some outlier cases are not sampled, including wet outliers in 
Monsoonal North and Wet Tropics. The spread in the subset is broadly 
representative of the whole ensemble for austral winter, after excluding 
models by ECS, excluding models rejected through evaluation, and 
averaging ensemble members from the same model first (Fig. S4). 
Similarly, the spread is similar for austral summer, except the subset 
doesn’t include (and can’t include) wet outlier KACE–1–0-G for Murray 
Basin and South and Southwestern Flatlands (Fig. S5). As for tempera
ture change ranges, the range of ECS in the subset broadly matches 
CMIP6 and the group of 18 (Fig. 3), although importantly, the mean is 
still higher than the that from the independent assessment presented in 
IPCC (2021). 

The subset includes models’ representative of a relatively small 
poleward shift in the latitude of the monsoon shearline (NorESM2-MM, 
0.1 ◦Lat under SSP5-8.5), those with a moderate poleward shift (EC- 
Earth3 at around 0.5 ◦Lat), and models with a larger shift (CMCC-ESM2, 
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Fig. 7. Scatter plot of change in SAT and PR between 1950 and 2000 and 2050–2100 under SSP3-7.0 for all realisations from 35 models (grey circles), highlighting 
particular models and ensemble members, see legend. Markers circled in red indicate the realisation selected for each model (r4 for ACCESS-CM2, r6 for ACCESS- 
ESM1.5, otherwise r1). The spread of projected change from the whole ensemble and for the subset is as a boundary plot and boxplots below and to the left of the 
boundary plot show the mean and the 25–75% range and outliers in each model group. 
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around 1.5 ◦Lat). Models with larger poleward shifts than this, at >2 
◦Lat, are all previously rejected (INM-CM5, TaiESM1, CIESM), and no 
model shows an equator-ward shift. Similarly, the subset contains rep
resentatives of different magnitudes of poleward movement and 
strengthening of the Subtropical ridge, including models with a weaker 
projected strengthening of the ridge than the model mean (ACCESS- 
ESM1.5), strengthening near the model mean but a larger poleward 
movement (EC-Earth3) a stronger strengthening and poleward response 
than most models (NorESM2-MM), and those in the mid-range for both 
(ACCESS-CM2, CMCC-ESM2). 

Further models within the group with sub-daily data available that 
could be downscaled include those with high climate sensitivity for an 
examination of ‘low probability high impact’ outcomes of high warming 

(CESM2, UKESM-1-0-LL), noting that these are not independent of those 
selected. Similarly, EC-Earth3-Veg could be downscaled as a wet case 
but is not independent from EC-Earth3. If the RCM doesn’t require sub- 
daily data, then any models not rejected could be used, such as FGOALS- 
g3, GFDL-ESM4, CNRM-CM6-1-HR and KACE1-0-G (Table S1). Syktus 
et al. (2022) has selected some of these models for use in CORDEX 
Australasia (see Discussion). 

The subset of models is also broadly representative of the projected 
change in RX1day rainfall relative to the change in the mean. In a subset 
of 17 CMIP6 models, virtually all show a projected change in RX1day 
rainfall that is more positive (wetter, or else less dry) than the change in 
the mean for all seven cluster regions (results not shown). This is broadly 
consistent with what could be expected from the thermodynamic 

Fig. 8. Time series and map plots of change in the seven selected realisations from CMIP6, TOP: change in surface air temperature for Australia relative to 
1850–1900, lines show 20-year running mean, filled dots and maps show the change between 1850 and 1900 and 2080–2099, grey bar shows the 5–95% range of all 
CMIP6 models. BOTTOM: as for top panels but showing change in mean annual precipitation relative to 1950–2000 (%), and line plots are given for two example 
‘cluster’ regions of Australia: SSWF = Southern and Southwestern Flatlands, and MN = Monsoonal North. 

M.R. Grose et al.                                                                                                                                                                                                                                



Climate Services 30 (2023) 100368

14

response to warming along with changes to dynamic aspects such as the 
intensity or frequency of weather systems. Four of the selected models 
are part of this 17-member subset, and broadly represent the change in 
the 17, including smaller and larger enhancements (e.g., CNRCM-ESM2- 
1 and EC-Earth3 respectively in Monsoonal North), and containing rare 
exceptions where RX1day is more negative than the change in the mean 
(e.g., EC-Earth3 in the East Coast). 

The ensemble as a set of future ‘storylines’ 

This group of seven selected individual model realisations used as 
input to CORDEX Australasia are generally representative of the CMIP6 
ensemble in terms of SAT and PR change in Australia, once rejected 
models and outliers in ECS are excluded (Fig. 7). This means their 
projections can be used in typical projections presentations plots such as 
plume plots and map plots with confidence they are broadly represen
tative of the long-term projected trends in the 10–90% range from 
CMIP6 (Fig. 8). This includes a spread that covers the projected tem
perature range for Australia, the range of projected drying in the 
southwest (SSWF cluster) as well as the range of projected change in 
rainfall from significant decrease to increase for the north (the MN 
cluster). However, the subset doesn’t correct or otherwise improve the 
ranges from CMIP6, such as the uneven spread of ECS (Fig. 3). 

However, a subset of seven model simulations can’t be a balanced 
and detailed sampling the probability distribution of the full ensemble of 
over 100 members. But the subset can be used to representatively 
sample the range of future climate changes in the ensemble, when 
thought of in broad categories such as wetter and drier. In this way, the 
seven simulations can be used to generate key climate futures that 
broadly encompass the range of possibilities, using some principles 
taken from a storyline approach (Shepherd et al. 2018), or the ‘climate 
futures’ approach (Whetton et al., 2012). These different physically 
plausible futures in temperature and rainfall (for a given SSP) can be 
summarised by short narratives (Table 3). The addition of the ‘low 
probability high impact’ outcome from models with ECS above the very 
likely range (also with very high Australian warming) could be thought 
of as another storyline. 

Once the range of physical drivers behind the projected change in 
each model are understood in the host GCMs, these can be added as part 
of the narratives for each storyline. Also, once the effect of the regional 
modelling step is clear, including any ‘added value’ from the RCMs, this 
can also inform these narratives. 

Discussion 

A large MME can potentially produce statistically balanced uncer
tainty assessments, but this at least requires a large ensemble size, such 

as the 78 EURO-CORDEX simulations analysed in Evin et al. (2021). It 
may not be appropriate to use a smaller MME, or arguably even a large 
ensemble, in this way. Instead, a limited modelling program may be 
thought of as illustrating details of plausible future climates using a 
storyline approach (Shepherd et al., 2018) rather than truly statistically 
balanced estimates. The storyline approach presents physically self- 
consistent future scenarios that can be used for event-based risk man
agement. Storylines aren’t given with formal probabilities and fre
quentist statistics of the ensemble (such as mean and standard deviation 
of the ensemble spread), but nevertheless provide a useful framework 
for decision making given the context. 

There are several a priori limitations on this Australasian MME that 
are barriers to a balanced ensemble, including the limited GCM choice 
due to a lack of sub-daily data and the limited number of RCM simula
tions due to high costs. This means that the storyline approach is taken 
as the default, out of necessity. In terms of GCM selection, this means 
reducing the GCM ensemble to its most salient narratives, rather than 
aiming for a full statistical spread. Once RCM simulations are produced, 
these can then form the basis of the projections and input to storylines 
but are dependent on the GCM selection as part of a cascade of processes. 
So, while we can aim to make the outputs as balanced as practically 
possible, they will not sample the full range of epistemic uncertainty and 
won’t be a probabilistic sample of future uncertainty. This problem is 
not specific to this program and is true of any limited ensemble. How
ever, there is real explanatory power and utility in the storyline 
approach for the uses of climate projections and climate services, so this 
position is not in fact a poor one. The MME can use good practice such as 
rejecting unsuitable models, avoiding using models that are highly 
dependent, and representatively sampling the independently assessed 
uncertainty space of interest, within practical limitations. 

A notable issue when using CMIP6 is the uneven spread of climate 
sensitivity, and therefore average warming amounts for the globe and 
for Australasia. For mean warming estimates in IPCC (2021), models 
were weighted and combined with an assessment of climate sensitivity 
and historical warming and the use of emulators, which appears war
ranted for regional projections too. The group of 18 models with sub- 
daily data available also features this problem (Fig. 3). Despite delib
erately selecting models with a range of climate sensitivity and limiting 
the choice of models with ECS above the likely range, the spread of the 
selected set of seven highest priority models is still similar to CMIP6 as a 
whole and doesn’t match the likely range from IPCC (2021) and Sher
wood et al. (2020), see Fig. 3. This confirms that CMIP6, and this subset 
of CMIP6 models, shouldn’t be used with equal weighting to produce a 
balanced estimate of mean warming. Rather, weighting or other tech
niques should be used. Alternatively, models can be used in a Global 
Warming Levels framework, where changes at particular levels of global 
warming since the pre-industrial era such as 1.5, 2, 3 and 4 ◦C are 
presented by ‘time sampling’ the simulations when they reach that level, 
which standardises for climate sensitivity, see presentation in the IPCC 
Atlas chapter by Gutiérrez et al. (2021). However, even without 
weighting or by using global warming levels, the models can be used in a 
storyline framework, illustrating plausible physically consistent future 
climates but without using frequentist statistics (e.g., Shepherd, 2021). 

Some coordination and inter-comparability are very useful in an 
MME but competing interests and priorities from different modelling 
groups create practical barriers to central control or coordination. Also, 
there is value in diversity and advantages in using a ‘sparse matrix’ 
approach rather than a filled matrix. As part of the selection, the models 
assessed in the analysis for this paper were compared to the other two 
independent exercises in Di Virgilio et al. (2022) and Syktus et al. 
(2022). The studies made different choices regarding the spatial domain 
and the balance of evaluation metrics to use. Several models were 
identified as poor performers for this purpose and region regardless of 
the evaluation choices, including CIESM and IPSL-CM6A-LR. Some other 
models were rejected by the other studies but not this analysis, such as 
CMCC-CM2-SR5 (however, it was near the threshold for rejection). This 

Table 3 
Narrative descriptions of the projection from the seven selected models for 
Australia under SSP3-7.0 in terms of temperature and rainfall, also shown is the 
special case provided by UKESM1-0-LL. SWWA refers to Southwest Western 
Australia.  

Model Description 

ACCESS-CM2 A much hotter future, and drier in most regions except the 
southeast 

ACCESS-ESM1.5 A hotter and much drier future 
CESM2 A hotter future, wetter in parts of the east and north 
CMCC-ESM2 A much warmer future with little change in mean rainfall 

(with regional exceptions) 
CNRM-ESM2-1 A much hotter future, much drier especially in the east, but 

wetter in the northwest 
EC-Earth3 (or EC- 

Earth3-Veg) 
A hotter and much wetter future for much of Australia 
(except SWWA) 

NorESM2-MM Lower warming, mid-range changes in rainfall 
UKESM1-0-LL Low probability, high impact case (high climate sensitivity, 

high Australian warming)  
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suggests that, in part, the large-scale climatology of the Indo-Pacific 
region in terms of SAT and PR is acceptable, but that simulation 
within the Australasian domain is poorer. The differences are worth 
further investigation. 

The other two independent exercises in Di Virgilio et al. (2022) and 
Syktus et al. (2022) have been completed in parallel and these results 
can be compared here to assess the status of the CORDEX Australasia 
sparse matrix from all Australian contributors (Table 4). There are 15 
potential GCMs and 3 RCMs used, with 6 RCM configurations (CCAM- 
ACS, CCAM-Qld, CCAM-Coupled, BARPA, and two quite different con
figurations of WRF used in NARCLIM2). The generally dry case (AC
CESS-ESM1.5), the generally wet case (EC-Earth3, or alternatively EC- 
Earth3-Veg) and the cool case (NorESM2-MM) are downscaled by all 
RCMs, providing a useful comparison for this dimension of RCM un
certainty, including identifying added value that is robust to the models 
used. A high warming case (ACCESS-CM2) is included from three 
models. Four GCMs that don’t provide sub-daily data and so can only be 
downscaled by Syktus et al. (2022), meaning these models won’t be part 
of a strict sparse matrix approach unless an additional RCM system is 
added, but provide useful alternative samples. Another dimension to the 
matrix is that Syktus et al. (2022) will run coupled RCM simulations for 
five simulations from four models. Two of these models will also be 
downscaled using the non-coupled version of the same model, and other 
RCMs as well (Chapman et al., submitted). This means the effect of 
different RCMs, and of coupling in the RCM, can be examined and 
distinguished. The ‘low probability, high impact’ case represented by 
UKESM1-0-LL, with climate sensitivity above the very likely range and 

high Australian warming, will be downscaled by one RCM, and will 
provide a useful illustration of this possible future. 

By applying this selection strategy, the results will differ from other 
strategies in key respects. By applying an independence condition, 
considering climate sensitivity and considering representativeness for 
Australian climate change, the model list differs from the ranking of 
models by evaluation of the simulation of Australian climate. For 
example, if seven models were simply chosen by ranking of the com
bined M statistic (incorporating temperature, precipitation and surface 
pressure) then: 1) closely related models would be chosen (e.g., EC- 
Earth3 and EC-Earth3-Veg), 2) three of seven models would have high 
climate sensitivity (UKESM1-0-LL, ACCESS-CM2, CESM2), and the se
lection would not include some key ‘Climate futures’, such as the dry 
future in ACCESS-ESM1.5 (ranks at number eight). Also, if representa
tiveness for a region other than Australia were considered (e.g., global 
changes, southern hemisphere, southeast Asia, Australasia as a whole) 
the results would also differ. Also, the results are likely to depend on the 
variabels included in the representativeness assessment. Here we 
focussed on projected change in temperature and rainfall, with a basic 
check on the projection of major circulation changes, which likely yields 
different results than if the sub-setting included relative humidity, ra
diation and windspeed following Hayashi and Shiogama (2022). 

The current strategy doesn’t represent an idealised sparse matrix 
based on theory, so doesn’t have a balanced number of RCMs down
scaling a planned set of GCMs. However, it has many strong features that 
allow inter-comparison of different RCMs and analysis of added value. It 
also features good attributes in terms of evaluation, independence and 

Table 4 
The current status of the CORDEX-Australasia sparse matrix from participating Australian groups, with the GCM noted in rows and the RCM in columns, and the 
specific realisation used is noted in each cell. Regional climate modelling efforts are as follows: CCAM-Qld uses the CCAM model in non-nudged mode with bias 
correction of inputs and including some coupled simulations; NARCLIM2.0 is the third generation of the New South Wales and Australian Regional Climate Modelling 
project using two configurations of the WRF model (different physics parameterisations); CCAM is using the CCAM model in nudged mode without bias correction of 
inputs; BARPA is the Bureau of Meteorology Atmospheric Regional Projections for Australia. The orange highlight marks models with no sub-daily outputs available, so 
can only be used by CCAM-Qld, highlighted blue simulations are RCM run in ocean–atmosphere coupled mode.  
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representativeness. 
The results of this ensemble will be useful as a core data source but 

must always be placed in a larger context given the constraints involved. 
In particular, the use of two SSPs that bracket a range of plausible socio- 
economic developments (SSP1-2.6 and SSP3-7.0) is useful but limited, 
and the fuller range of plausible pathways need to be acknowledged, 
including a worst case (SSP5-8.5), a pathway consistent with 1.5 ◦C 
global warming (SSP1-1.9) and those outside of the Tier 1 SSPs 
including overshoot, carbon dioxide removal and more. The Global 
Warming Levels framework (time sampling regional climate as the 
world reaches 1.5, 2, 3 and 4 ◦C global warming) is a useful tool to 
standardise between different possibilities. 

Also, the results should be put in the wider context of other models, 
including the host models themselves, other CMIP6 models, insights 
from running large ensembles of GCMs, further ‘convective permitting’ 
modelling to add further insights on regional climate change, as well as 
emulators and simple models. In addition, tools such as deep learning 
and machine learning (e.g., Wang et al., 2022) are now mature and 
should be used to provide additional insights. 

Conclusions 

The future-focussed component of climate services requires a core 
data source of credible and locally relevant climate model simulations. 
While no modelling framework is perfect, the strategic use of down
scaling using Regional Climate Models (RCMs) from selected Global 
Climate Models (GCMs) for a set of Shared Socio-economic Pathways 
(SSPs) in a coordinated program has several advantages. Such an 
ensemble uses a recognised and well-established source of global 
modelling, then provides regional scale ‘added value’ on top of this and 
also accounts for the effect of regionalisation in the ‘cascade of 
uncertainty’. 

Here we have described the strategy for producing a model ensemble 
of RCM simulations to provide climate services in Australia, with a focus 
on the appropriate selection of GCMs and structuring of the RCM 
ensemble. Climate simulations from a set of up to 15 global climate 
model simulations (seven selected here) downscaled by four or more 
regional models for two future scenarios (a very low and a high SSP) 
under an ad hoc ‘sparse matrix’ is proposed. The projections cannot be 
considered a probabilistic or balanced estimate of uncertainty given the 
limited ensemble size and underlying epistemic uncertainties. The 
ensemble can however be used in a ‘climate futures’ or ‘storyline’ 
approach to illustrate plausible future climates that broadly span the 
range of possibilities suggested by CMIP6, while producing added value 
at the regional scale. In this way, the ensemble can form a useful tool for 
informing climate change adaptation planning and motivating emissions 
mitigation. The seven GCMs proposed for selection here all simulate the 
current climate to an acceptable level, are relatively independent, and 
are representative of the projected range of change in temperature and 
rainfall over the 21st Century in CMIP6. 

The strategic sampling of plausible future climates using selected 
GCMs that are then downscaled using RCMs in a coordinated program is 
a useful core data source for the current generation of climate services. 
However, the data should of course be consistent with the assessment of 
climate change from multiple lines of evidence. The results of this 
modelling are for two SSPs only, so should be put in wider context of 
other possibilities of SSPs and other potential pathways. Also, the results 
should be put in the wider context of other models, including CMIP6, 
large ensembles of GCMs, ‘convective permitting’ modelling, emulators, 
deep learning and machine learning and more. 
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