
1.  Introduction
By the mid-1980s, drought had been defined in the scientific literature in more than 150 ways (Wilhite & 
Glantz, 1985). Existing definitions reflect perception differences across various disciplines (e.g., meteorology, 
hydrology, agriculture, society and economy) of the most important impacts of droughts (Wilhite & Glantz, 1985). 
Research in the late 1990s grouped existing conceptual definitions into four forms of drought (AMS, 1997). 
Meteorological drought (also termed climatological drought) refers to a period of below normal precipitation. 
Agricultural or soil moisture drought is concerned with the deficiency in water available for agriculture or natural 
ecosystem as a result of subsequent soil moisture depletion. Hydrological drought is concerned with the direct or 
indirect impacts of shortfall in surface and subsurface water supply. Socioeconomic drought refers to the effect of 
any of the meteorological, agricultural or/and hydrological droughts on people and water-dependent economies. 
More recently, the IPCC report defined drought as “a period of abnormally dry weather long enough to cause a 
serious hydrological imbalance” (IPCC, 2014; Seneviratne et al., 2012).

Drought indicators typically assess anomalies in a particular climate feature and make drought conclusions based 
on pre-defined thresholds (Heim, 2002; J. Keyantash & Dracup, 2002; Yihdego et al., 2019). Among the most 
common indicators used in drought analysis are the Standardised Precipitation Index (SPI; McKee et al., 1993) 
and the Palmer Drought Severity Index (PDSI; Palmer, 1965). SPI is based solely on precipitation (P) anomaly, 
while PDSI simulates soil moisture anomaly from the difference of potential evapotranspiration (PET) and P. 
More recently (Hobbins et al., 2016), developed the Evaporative Demand Drought Index (EDDI), a drought indi-
cator that is based solely on PET anomaly.

Drought indicators typically define a drought event as statistically anomalous in a distribution of a specific cli-
mate feature (e.g., McKee et al., 1993; Stagge et al., 2015). There are however circumstances where near-normal 
conditions of several climate variables occurring simultaneously lead to impactful droughts even though they 
wouldn't necessarily be labeled as droughts using common drought indicators. For example, in the agricultural 
context, moderate pre-existing soil moisture shortages combined with a moderate precipitation shortage will 
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likely result in a drought. None of these hydroclimatic variables, when considered in isolation, needs to be an ex-
treme anomaly for a drought to occur (IPCC, 2014). Similarly, a pre-existing soil moisture surplus combined with 
abnormally low precipitation might not lead to a drought. Therefore, looking for droughts only in the extremes of 
a distribution can be misleading.

Furthermore, drought indicators usually focus on a narrow selection of climate or agro-hydrological variables 
(and sometimes a single one) and so ultimately cannot identify all forms of droughts (Van Loon & Van La-
nen, 2012). Using multiple drought indicators instead of a unique indicator is also highlighted in existing studies 
(Xu et al., 2019). For effective drought planning and response, it is important to develop monitoring tools capable 
of providing drought information for all sectors impacted by droughts (Wilhite, 2009). This requires simultane-
ous assessment of several drought-related variables (Brown et al., 2008). Several approaches integrate various 
aspects of the land-atmosphere-ocean system (e.g., Azmi et al., 2016; Brown et al., 2008; Fernando et al., 2019; 
J. A. Keyantash & Dracup, 2004; Li et al., 2015; Xu et al., 2020; Zhang & Jia, 2013), improving drought identi-
fication. However, they were not designed to detect all forms of drought, although some exceptions exist (Azmi 
et al., 2016). The development of a comprehensive drought index was described by the United States Western 
Governors' Association (WGA) as a top priority for improving monitoring capabilities and assisting sectors at 
risk in planning mitigation activities (AWG, 2004).

Recent research applied machine learning techniques and other statistical methods, including regression mod-
els, data assimilation methods, and conditional probability models, to predict existing drought indices using a 
number of climate variables as predictor variables (Deo & Şahin, 2015; Hao et al., 2018; Khan et al., 2020; Park 
et al., 2016; Soh et al., 2018; Xu et al., 2018, 2020; Yang et al., 2019). These efforts enabled the reconstruction 
of drought indices over time and space where the original drought indices could not be developed mainly due 
to lack of data needed to derive them. Statistical-based drought indictors developed this way, at best, mimic the 
predictive capabilities of the drought indices they are trying to emulate. However, as the drought indicators are 
themselves not perfect, fail to accurately depict drought events. Ultimately, the enhancement brought by most of 
these statistical-based indicators is limited to extrapolation in time (i.e., future predictions and past reconstruc-
tion) and/or space (areas with no data)—the quality of prediction offered by the drought index did not improve 
(Hao et al., 2018).

Very little effort has been made to incorporate real drought impacts data in the development of drought indices 
(Hughes et al., 2020 is a notable exception). This is curious since, in reality, the main purpose of using drought in-
dicators is to enable governments and water-dependent sectors to better address impacts associated with droughts 
(AWG, 2004). Arguably, for better decision-making in water resources and agricultural management, it is impor-
tant that drought definitions only include droughts that have impacts, and avoid the very real possibility of giving 
false warnings about events simply because they were found in the extreme of a distribution.

The aim of this paper is to introduce a new approach to defining drought by incorporating information from 
previous drought events reported in drought impact reports. As far as we are aware, documented drought impact 
has never been directly used to improve the ability to formally identify and predict drought. In particular, the 
new drought indicator needs to (i) ingest a broad range of drought-related climate variables simultaneously and 
consider their interactive effects (ii) uncover all forms of droughts (i.e., meteorological, agricultural, hydrological 
and socio-economic), that lead to impacts, (iii) provide a better quantification of drought than severity categories 
that are based on arbitrary thresholds, (iv) not pre-define the number of droughts occurring over time.

Texas is used as the test region, taking advantage of the wealth of drought information available from drought 
impact reports and other resources. The following section describes the data used to train the Random Forest (RF) 
algorithms, and the applied methods to test and test the developed RF drought. Results are provided in Section 3, 
then discussed and summarized afterward.

2.  Materials and Methods
A RF binary classification algorithm was trained to discern “drought” and “no drought” conditions based on 
monthly climate data. We developed a database that indicates, for each month during 1982–2016 and partic-
ipating Texan county, whether there was a “drought” or “no drought”. We used binary labels “1” and “0” for 
“drought” and “no drought” respectively, and months which don't have associated drought information were 
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left unlabeled. We collected the data by reading through several hundred freely available reports that provide 
information on drought impacts and monthly weather conditions. Corresponding climate data was extracted from 
several global datasets of drought-related variables. Thus, the labeled data that was used to build and test the RF 
model comprised monthly climate data as predictor variables (or features), and two binary classes “1” and “0” as 
a response variable. Unlabeled data was excluded from the training and testing.

Training the RF algorithm was conducted on a random sample consisting of 75% of the labeled data, while the 
remaining 25% of the data was used for out-of-sample testing of the trained model. The performance of the RF 
algorithm was assessed across 100 different random selection of training and testing subsets and compared with 
commonly used drought indicators along with the US Drought Monitor (USDM), which is the state-of-the art 
drought monitor in Texas. A detailed description of the methodology is provided below.

2.1.  Predictor Variables

Predictor variables comprise a range of drought-related climate variables and phenomena that describe the 
land-atmosphere-ocean system. These include monthly estimates of precipitation (P), surface soil moisture (SM), 
PET, actual evapotranspiration (ET), change in water storage (CWS), Normalised Difference Vegetation Index 
(NDVI), and El Niño-Southern Oscillation (ENSO). Surface soil moisture of the previous month (SMprev) and 
the calendar month were also incorporated as predictor variables. These predictors are chosen because they are 
directly associated with drought development (e.g., P, PET, ET, SM, or interaction thereof), persistence (e.g., 
ET, SM, and NDVI), and/or impacts (CWS) and may have varying importance depending on a number of factors 
including the season (month) and the region. Incorporating ENSO as a predictor variable was guided by studies 
showing droughts in Texas are related to La Niña events, which affect Pacific moisture patterns (Pu et al., 2016; 
Schubert et al., 2004; Seager et al., 2014). SMprev was used to provide information on the resilience of the system 
to withstand drought. Most of these predictor variables appear in existing drought monitoring approaches(Be-
guería et  al.,  2014; Brown et  al.,  2008; Hao et  al.,  2018; Karnieli et  al.,  2010; McKee et  al.,  1993; Nanzad 
et al., 2019; Ukkola et al., 2018).

The source and reference of each dataset are provided in Table 1. The spatial resolution of all the employed grid-
ded datasets is 0.25° except PET and CWS which have a coarser resolution of 0.5°. All the gridded datasets are 
resampled to a common 0.5° grid using nearest neighborhood interpolation. Predictor variables are then extracted 
at 30 grid points (Figure 1) in all time steps during 1982–2016 where matching drought event labels are available. 
The 30 grid points are located in 30 counties, most of them are about the size of a grid cell, that is, 0.5°. These 
are distributed over all 12 Texan eco-regions identified by the United States Environmental Protection Agency 
(EPA, https://www.epa.gov/; Figure 1).

2.2.  Binary Database of “Drought” and “No Drought” Events

“Drought” and “no drought” events attributed to a grid cell during a period of time are based on information 
extracted from two main sources. “Drought” included effective droughts, whereas “no drought” includes wet 
conditions and marginal water stress conditions'. The source that contributed to most of the “drought” events is 
the Drought Impacts Reporter (DIR), a national interactive drought impact database developed and maintained by 
the U.S. National Drought Mitigation Center (NDMC; Wilhite et al., 2007). Sources contributing to the DIR da-
tabase include news articles, scientific publications, National Weather Service Drought Information Statements, 
agency reports, and reports submitted by government officials and the public. The DIR comprises information 
on drought impacts reported by a wide range of drought-impacted sectors. Submitted reports from any source 
are then reviewed for drought impact information and verified by NDMC before becoming publicly available at 
https://droughtreporter.unl.edu/. Reported impacts include the agricultural sector, livestock, water, energy, and 
fire sectors, social impacts, forestry, recreation and tourism, and more.

A major source of “no-drought” events are the Texas Climate Monthly Reports (TCMR), monthly bulletins pro-
duced by the Office of the State Climatologist at Texas A&M University. They provide a summary of weather 
conditions throughout Texas, describe big weather events such as floods, storms, and hurricanes, and report the 
number of days with rain and monthly precipitation totals picked up in several locations. Monthly bulletins are 
produced from 1990 onwards and can be accessed at https://climatexas.tamu.edu/products/texas-climate-bulle-
tins/index.html.

https://www.epa.gov/
https://droughtreporter.unl.edu/
https://climatexas.tamu.edu/products/texas-climate-bulletins/index.html
https://climatexas.tamu.edu/products/texas-climate-bulletins/index.html
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Building the database of Texas drought events involved a careful assessment of the DIR, TCMR, and relevant 
literature. Periods where regions were trending toward drought or recovering from it are not marked as events. 
Furthermore, we excluded reports of small scale impacts and only included county scale impacts; this ensured 
scale consistency between observed drought impacts and the measured drivers described in Section 2.1.

Climate variable and unit × month−1 Name and Reference
Temporal and spatial coverage and 

resolution Data description and access link

Change in total water storage (mm) GRACE-REC (Humphrey & 
Gudmundsson, 2019)

1979-2016 monthly 0.5° global land JPL_MSWEP – 1st member: Statistical 
model trained with GRACE JPL 
mascons and forced with MSWEP 
precipitation. The change in total 
water storage in a given month was 
computed by subtracting the total 
water storage anomalies of the 
previous month from the current 
month. https://figshare.com/

Evapotranspiration (mm) DOLCE V2.1 (Hobeichi, 2020) 
(Hobeichi et al., 2021)

1980-2018 monthly 0.25° global land Observationally constrained hybrid 
evapotranspiration product 
derived by merging 11 available 
ET products. http://dx.doi.
org/10.25914/5eab8f533aeae 

Precipitation (mm) GPCC V2018 (Schneider et al., 2018) 1891-2016 monthly 0.25° global land 
excluding Antarctica

Monthly Land-Surface Precipitation from 
Rain-Gauges built on GTS-based and 
Historical Data https://psl.noaa.gov/
data/gridded/data.gpcc.html

Potential Evapotranspiration (mm) Priestley-Taylor PET 1901-2017 monthly 0.5° global land 
excluding Antarctica

Calculated from CRU TS4.02 (Harris 
et al., 2014) monthly cloud cover 
and mean temperature using 
the R package rstash (https://
github.com/rhyswhitley/r_stash; 
Davis et al., 2017) CRU TS4.02 
data can be accessed via https://
catalogue.ceda.ac.uk/uuid/
b2f81914257c4188b181a4d8b0a46bff

Soil moisture of the current and 
previous months (m3 m−3)

CCI-SM (Gruber et al., 2019) (Gruber 
et al., 2017) (Dorigo et al., 2017) 
(Liu et al., 2012)

1979-2019 daily 0.25° daily global 
land excluding land covered with 
snow

COMBINED CCI Soil Moisture 
product datasets v04.7 https://esa-
soilmoisture-cci.org/

month 1980-2016 Calendar month

ENSO Index (Smith & Sardeshmukh, 2000) 1870-2020 1-month running mean A Bivariate EnSo Timeseries or the 
"BEST" ENSO Index it combines 
(i) SOI: Southern Oscillation Index 
(based on the observed sea level 
pressure differences between Tahiti 
and Darwin) and (ii) Niño 3.4 SST 
(NINO3.4 is the average sea surface 
temperature anomaly in the region 
bounded by 5°N to 5°S, from 170°W 
to 120°W) based on the mean 
climatology for the period 1871-2001. 
https://psl.noaa.gov/

NDVI NASA-GIMMS v1.1 (Pinzon & 
Tucker, 2014)

July 1981 to Dec 2017 0.0833° 
bimonthly

NDVI from Advanced Very High 
Resolution Radiometer, averaged to 
monthly by taking the maximum of 
bimonthly values https://gimms.gsfc.
nasa.gov/

Table 1 
Climate Variables Used as Predictor Variables
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The final (spatiotemporally incomplete) database for this test case comprises a total of 1005 records in 500/505 
split for “no drought” and “drought” respectively. Each record consists of a location (a county), a time (year and 
month) and a label (“drought” or “no drought”). Table S1 in the Supporting Information S1 shows these records 
along with the relevant source.

2.3.  Random Forest Algorithm

2.3.1.  Building a Random Forest Classification and Probability Model

Random forest algorithm (Breiman, 2001) grows a collection of classification trees (or alternatively probability 
trees) each fitted on bootstrap samples (samples are drawn with replacement) of labeled data (predictor variables 
and associated labels) available for training. As a result of the bootstrapping procedure, trees in the forest are 
trained on different—but not mutually exclusive—subsets of labeled observations. In each tree, data undergo 
recursive binary splits based on the predictor variables. The sample data at a parent node is split on a predictor's 
cutoff value (e.g., P = 100 mm) and results into exactly two child nodes. A subset of predictors of predefined size 
is available for the split at each node. The RF algorithm carries out an optimization procedure that controls the 
selection of an appropriate predictor at each node, the cutoff values at which the data will split, and whether there 

Figure 1.  Location of 30 grid cells used in this study over a layer of Texas ecoregion map (level 3) developed by the EPA (https://www.epa.gov/).
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will be further splitting. These decisions are based on a metric known as the Gini index (Breiman et al., 1984) 
which measures the relevance and consequence of each feature available for split at each node, and that ensures 
that as the trees grow, the impurity decreases, that is, the variance within subsequent child nodes decreases. Each 
tree keeps growing until the impurity does not decrease further, or until the number of samples in the terminal 
node—also called leaf node—falls below a threshold.

Each terminal node in the forest is assigned a class “drought” or “no drought” and a probability of drought. The 
class represents the majority label in the terminal node. The probability of drought is equal to the proportion of 
“drought” labels at the terminal node, and it represents the conditional probability of drought emergence given 
the features described from the top of the tree down to this terminal node. The reliability of conditional probabil-
ities computed by the RF approach is examined and demonstrated by Malley et al. (2012).

This work applies a new implementation of RF developed in the “RANdom forest GEneRator” (ranger; Wright 
& Ziegler, 2017), an open source software package in R. Ranger provides a higher computational speed and 
better memory storage efficiency compared to other available implementations [e.g., Random Jungle (Kruppa 
et al., 2014), and Random Forest (Liaw & Wiener, 2002)] while maintaining a similar performance (Wright & 
Ziegler, 2017). We used the default parameters described in the ranger package to build both the RF classification 
model and a RF probability model. These involve 500 trees, three predictor variables available for split at each 
node (i.e., mtry =  𝐴𝐴

√

number of features ), and the same size as the training dataset is used for number of boot-
strap samples. It is recommended to set the number of trees to a computationally feasible large number (Hengl 
et al., 2018). Since the processing time was negligible (<10 milliseconds for training), we used a large number 
of trees, that is, 500. The selected value for the “mtry” hyperparameter (i.e., 3) was identified by a 10-fold cross 
validation test as the optimal mtry value.

It is important to note that the sub-sampling of predictors at each node along with the bootstrapping procedure 
and the fact that trees are built in parallel force variation between trees and ensure that they have a small pairwise 
correlation.

The outcome from training the RF algorithm on drought event data can be either a RF binary classification model 
or a RF probability model. This is determined during the training process and is based on whether the purpose is 
to classify new samples as “drought” or “no drought”, or to compute the conditional probability of drought. Here 
we developed and used both models.

2.3.2.  Prediction

To predict the binary class and the drought probability of a given new sample, its driver values are propagated 
through all the trees in the forest, and the terminal node values at each tree—which have been calculated during 
the training process for both class and the probability—are collated. The final class assigned to the new sample 
is based on the majority class from all trees, and the estimated conditional probability of drought is the average 
probability estimate over all trees.

2.3.3.  Variable Importance

We use conditional permutation to assess the importance of each predictor variable as described in (Strobl 
et al., 2008). To measure the importance of a particular predictor variable, for example, ET, ET is randomly 
permuted, then predictions are made using the remaining variables and the permuted variable (substitute of ET). 
The difference in prediction accuracy before and after permuting ET averaged over all permutations in the forest 
is used as a metric of its importance. The most important variable is the one that achieves the largest reduction in 
prediction accuracy when randomly permuted. Conditional permutation variable importance reflects the true im-
pact of each predictor variable more reliably than the default variable importance scheme in the Ranger package, 
namely Gini importance (Sandri & Zuccolotto, 2008). For each predictor variable, Gini importance measures the 
reduction in impurity on the response variable achieved by each predictor at every split across all nodes in all 
trees. The conditional permutation importance was proven more reliable than the Gini importance in situations 
where some predictor variables are highly pairwise correlated (Strobl et al., 2008), and/or have different scales of 
measurement and categories (Strobl et al., 2007). Conditional permutation variable importance was derived using 
the R party package (http://party.R-forge.R-project.org).

http://party.r-forge.r-project.org/
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2.4.  Comparison of Drought Indicators

We compared the prediction skill of the RF drought indicator (tested out-of-sample) with commonly used drought 
indicators. We provide a quick summary of these, and refer readers to the associated publications for further 
details.

SPI: Assesses drought solely from precipitation. At a given location, long term monthly precipitation is trans-
formed into a normal distribution, and the computed SPI value represents the unit standard normal deviate. 
Previous studies have associated droughts with SPI values of less than −1 for example, (Bachmair et al., 2015), 
−0.8 (in USDM) or 0 (McKee, 1995). We calculated monthly SPI using the SPEI R package for each grid point 
presented in Figure 1 from the same precipitation dataset used to develop the RF model. We derived SPI for sev-
eral accumulation periods including 1, 3, 6, 9 and 12 months. In this study we carry out the analysis using each 
of the three drought cutoffs, that is, −1, −0.8 and 0.

Evaporative Demand Drought Index (EDDI; Hobbins et al., 2016): monitors drought solely from PET anomalies, 
where PET is derived using the American Society of Civil Engineers standardized reference ET equation (Walter 
et al., 2000), which estimates PET by simplifying the Penman-Monteith equation mainly from satellite-based es-
timates of temperature, humidity, windspeed, and solar radiation. Unlike SPI, the probability distribution of PET 
is computed empirically using an inverse normal approximation. Positive (negative) EDDI values are commonly 
used to discern drought (no drought) conditions. We downloaded EDDI maps for the period 1980–2016 from 
https://psl.noaa.gov/eddi/ using the R package “eddi”.

PDSI: assesses droughts using anomalies of soil moisture, where soil moisture is calculated from P and PET 
using a simple soil moisture balance model. Negative (positive) PDSI values are used to discern drought (wet) 
conditions. In this work we calculated PDSI from the same P and PET datasets used to develop the RF drought 
indicator. We used the R package scPDSI to calculate a self-calibrated version of PDSI.

The U. S. Drought Monitor (USDM; Svoboda et al., 2002): is currently the state-of-the-practice for drought mon-
itoring in the U.S. It consists of weekly maps that show regions where land has been Abnormally Dry (D0), or in 
drought with intensity ranging from moderate (D1) to exceptional (D4). Drought categories are produced from 
blending i) several drought indices including SPI and PDSI, (ii) the analysis of various observed and modeled 
climate variables such as P, temperature, snow water equivalent, water in the soil, streams, lakes and others, (iii) 
reported drought impacts, and (iv) experts assessment of (i), (ii) and (iii) and judgments. In this sense USDM 
is a retrospective, assimilated observationally-based product, that could not, for example, be applied to climate 
projections. The spatial resolution of the USDM Maps is the approximate scale of a climate division, that is 10 
regions in Texas. USDM maps are available from 2000. We downloaded USDM maps from https://www.drought.
gov/drought/ and aggregated weekly maps into monthly binary “drought”/“no-drought” maps whenever possible. 
Regions consistently in drought (non-drought) during a month were labeled “drought” (no-drought), whereas 
regions that were in drought during part of the month were not used in the comparison.

2.5.  Out-of-Sample Testing and Performance Metrics

We assessed the performance of the RF algorithm by testing its ability to correctly classify unseen events (not 
used in training). To achieve this, 75% of events were used to train the RF model, and the remaining 25% of 
events used to test it. The 75/25 sampling was randomized 100 times to create 100 different RF models. The 
performance of the RF approach was then assessed by comparing the performance of each RF model at its 25% 
of out-of-sample events, and aggregating across the 100 cases. Six statistical metrics commonly used in binary 
classification were then used to compare the out-of-sample success of the RF model compared to existing drought 
metrics:

•	 �Accuracy: correct predictions expressed as a fraction of total predictions
•	 �False alarm rate: incorrect “drought” predictions expressed as a fraction of all “drought” predictions
•	 �Success ratio or precision: correct “drought” predictions expressed as a fraction of all “drought” predictions
•	 �Threat Score or Critical Success Index: measures how well “drought” predictions correspond to “drought” 

observations. It is calculated as correct “drought” predictions expressed as a fraction of both “drought” pre-
dictions and “drought” observations combined

https://psl.noaa.gov/eddi/
https://www.drought.gov/drought/
https://www.drought.gov/drought/
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•	 �True positive rate or sensitivity (also known as recall and hit rate): correct “drought” predictions expressed as 
a fraction of “drought” observations

•	 �True negative rate of specificity: correct “no-drought” predictions expressed as a fraction of “no-drought” 
observations

A perfect score is 0 for the “False alarm rate”, and 1 for all the other performance metrics.

We computed these performance metrics for the RF-drought indicator, EDDI, PDSI, SPI, and USDM at all 100 
testing datasets. We also assessed the predictive ability of eight other well-known machine learning classifiers 
(Balakrishnama & Ganapathiraju, 1998; Breiman, 2001; Friedman, 1991; Kuhn, 2008; Mitchell, 1997; Nelder 
& Wedderburn, 1972; Scholkopf et al., 1997; Swain & Hauska, 1977; Wilhite et al., 2007; Zou & Hastie, 2005) 
trained with the same training datasets as the RF classifier, by computing these performance metrics across the 
same 100 out-of-sample testing iterations. The other machine learning algorithms are listed in Table S2 in the 
Supporting Information S1, we refer the reader to the associated publications for description of each algorithm.

3.  Results
3.1.  Performance of RF and Other ML Classifiers Out-of-Sample

Figure 2 shows the performance results of the RF and other ML classification algorithms, each trained on 75% of 
events and tested out-of-sample at 25%, across 100 random selections of training and testing samples. Random 
forest achieves above 90% score in accuracy, true positive, true negative and success ratio across the majority of 
iterations. The median threat score exceeds 80%, and the median false alarm rate is about 10%. In comparison 
with the other ML approaches, overall, the random forest algorithm performs the best across all metrics. The 
statistical significance of the improved scores of RF compared to the other ML algorithms is confirmed with a 
two-tailed t-test performed for each performance metric at 0.05 significance level.

The competitiveness of RF with the best available ML algorithms has been demonstrated across a range of appli-
cations (e.g., Cutler et al., 2007; Fernández-Delgado et al., 2014; McGovern et al., 2017; Park et al., 2016; Rod-
riguez-Galiano et al., 2012). Figure 2 shows that RF stands out as much more capable than the other employed 
ML algorithms in identifying teleconnections between climate features and droughts. There are two additional 
benefits in using RFs. First, RF is capable of quantifying the conditional probability of drought, a very important 
feature that is not found in most other classifiers. Also, as highlighted in Section 2.3.2, RF allows the assessment 
of the importance of its predictor variables, which gives insight into the factors influencing droughts, as well as 
the least important climate features in explaining and quantifying droughts in different circumstances.

3.2.  Performance of RF Out-of-Sample, Compared to SPI, PDSI, EDDI and USDM

Figure 3 illustrates the performance results of the RF drought indicator relative to EDDI, PDSI, USDM and SPI 
computed for 6 months accumulation period (at two drought cutoffs, −0.8 and 0, denoted by SPI-0.8 and SPI0 
respectively). The drought indicators are computed across the 100 different testing datasets. Overall, RF and 
USDM achieve the highest scores across all metrics followed by SPI-0.8 and SPI0. We exclude SPI at −1 drought 
cutoffs from the plot as it consistently shows inferior performance than each of SPI-0.8 and SPI0.

Figure 3 shows that the RF approach is more accurate than EDDI, SPI (at both thresholds), and PDSI, and has 
comparable accuracy to USDM. While the accuracy metric provides a summary of performance, the true positive 
and true negative scores compare the ability to correctly predict drought and no drought, respectively. USDM, 
EDDI, SPI0 and PDSI appear to do significantly better in identifying “drought” compared to “no drought”. This 
indicates that most of the inaccuracy in these three indicators come from their tendency to mistakenly predict 
“drought” when there is actually “no drought”. The RF approach scores higher than USDM in True negative and 
lower in True positive. The difference in score between True positive ratio and True negative ratio is the smallest 
in the RF approach and the highest in EDDI. Overall, the score of the RF approach is the least variable across the 
six performance metrics among all the indicators. The RF approach gives fewer false alarms of droughts than the 
other indicators and has the best success ratio.Both USDM and RF stands out in the “threat score”,with USDM 
scoring a slightly higher, but not statistically different mean threat score than that scored by the RF drought 
indicator. We compare the mean scores achieved by USDM and RF-drought indicator across all the metrics of 
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performance using a t-test, and we find that whenever the mean scores of the RF-drought indicator and USDM 
are statistically different at 5% significance level, the RF-drought indicator outperforms USDM (Table S3 in 
Supporting Information S1).

PDSI shows poor performance overall. It was previously reported that monthly PDSI do not capture droughts on 
short time scales, that is, less than a year (Dai, 2019). SPI computed for 6 months accumulation period performed 
the best compared to the other examined accumulation periods (i.e., 1, 3, 9 and 12), and its performance varies 
according to the drought cutoff. At a −0.8 cutoff, where droughts correspond to SPI ≤ −0.8, SPI−0.8 scored low 
in True positive and threat score, which indicates that SPI−0.8 tends to miss droughts. This explains why SPI−0.8 
achieved a near optimal score in the True negative metric. In contrast, at a 0 cutoff, SPI0 scored low in True neg-
ative and a near optimal score in True positive, which indicates that SPI0 tends to predicts drought when there is 
actually no drought.

Figure 2.  Performance results of RF classification algorithm and nine other ML classifiers at testing samples across 100 different sub-sampling of training and testing 
samples. Performance scores are explained in Section 2.5. The other ML classifers are Bagged Flexible Discriminant Analysis (BagFDA; Friedman, 1991), Decision 
Tree (DT; Swain & Hauska, 1977), Generalised Linear Models (GLM; Nelder & Wedderburn, 1972), Lasso and Elastic-Net Regularized Generalised Linear Models 
(GLMnet; Zou & Hastie, 2005), K-nearest Neighbors (KNN; Mitchell, 1997), Linear Discriminant Analysis (LDA; Balakrishnama & Ganapathiraju, 1998), Support 
Vector Machine radial basis kernel (SVMRadial), and Support Vector Machine polynomial basis kernel (SVM Poly Scholkopf et al., 1997). A brief description of each 
dataset is provided in Table S1 of the Supporting Information S1.
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3.3.  RF Drought Probability Maps

We built the final RF drought indicator for Texas on all event data without excluding a proportion for testing. 
In Figures 2 and 3, the purpose of training the RF algorithm on a subset (75%) of the labeled of data was to test 
the RF algorithm on unseen data and get a robust estimate of the derived RF model. Here, the RF model trained 
on all the labeled samples is used to predict the probability of drought at every grid cell and time step based on 
the values of the predictors (as explained in Section 2.3). This produced drought probability maps for Texas. In 
the following, we reference a Texas Climate Monthly Reports (TCMR) of a given month, for example, January 
2010 as TCMR/1-2010, where the actual reference is https://climatexas.tamu.edu/products/texas-climate-bulle-
tins/january-2010.html. We reference an impact report from the DIR database as DIR followed by its impact ID, 
for example, DIR4115.

Figure 3.  Performance scores of RF classifier and commonly used drought indicators, that is, USDM, EDDI with drought 
threshold value of 0, PDSI with drought threshold value of 0, and SPI with drought threshold values of 0 (SPI0) and −0.8 
(SPI-0.8) and computed for a 6-month accumulation period. Scores are computed at testing samples across 100 different sub-
sampling of training and testing samples. Performance scores are explained in Section 2.5.

https://climatexas.tamu.edu/products/texas-climate-bulletins/january-2010.html
https://climatexas.tamu.edu/products/texas-climate-bulletins/january-2010.html
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3.3.1.  The 2011 Drought

We examined a drought episode over Texas during 2010–2012 (known as the 2011 drought) using drought prob-
ability maps derived by the new RF drought indicator for the period spanning from January 2010 to April 2012. 
The 2011 drought was considered one of the most catastrophic short-term droughts in the US and caused tremen-
dous agricultural, hydrologic, economic and socio-economic losses (Combs, 2014; Grigg, 2014). It was thought 
to be linked to strong La Niña conditions in the Pacific which were established in the fall of 2010 and were 
responsible for the below normal rain received during 2010–2012 (Folger et al., 2012; Texas Water Development 
Board, 2012). The drought probability maps in Figure 4 illustrate how the 2011 drought progressed in time and 
space throughout the examined period.

Weather stations across Texas reported abundant precipitation during winter 2010 (TCMR/1-2010, TCMR/2-
2010, TCMR/3-2010, TCMR/12-2010). As soon as the spring began, dry conditions were felt statewide. Ac-
cording to impact reports, dry conditions were reported in the South central plains, Western Gulf Coastal Plain 
(DIR4115) and Panhandle from March 2010. In the next months, dry conditions worsened and caused severe 
impacts on the growing season (DIR25697). The drought probability maps in Figure  4 show an increase in 
drought probability from April through June, starting in Panhandle, west and south Texas and expanding grad-
ually to the entire state. The first half of July brought substantial rain (TCMR/7-2010) due to Hurricane Alex, 
which according the probability map has temporarily obliterated drought in most of Texas. The very dry and very 
hot August (TCMR/7-2010) appeared to have quickly wiped out the moisture brought by the wet spell in July; 
this is reflected in the increase in drought probabilities. In September 2010, a tropical storm brought significant 
rain along the Western Gulf Coastal Plain, Southern Texas Plains and East Central Texas plain (TCMR/9-2010), 
which as indicated in the September 2010 map temporarily broke the drought in these regions. Rain was also 
picked up by areas in the west and in the Panhandle, however, due to the very high temperatures, these areas were 
not relieved from the drought as observed in the drought probability map of September 2010. Very dry and very 
warm conditions returned in October (TCMR/10-2010) and quickly elevated drought probabilities. The drought 
areas, and many parts of Texas did not receive a single trace of rain. By the end of fall, drought exacerbated in 
Bastrop (DIR14853), Austin (DIR25214), Panhandle (DIR 3667), and many areas across the state were reported 
as natural disaster areas (DIR4115). The eastern part of the state experienced cold weather and rainy respite in 

Figure 4.  Drought probability maps predicted by RF during a drought episode.
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January 2011 (TCMR/1-2011), which lowered the percentage of the land in drought. In February 2011, Texas 
experienced sub-zero temperatures with scarce precipitation (TCMR/2-2011), which put most of the state under 
drought. Probability maps show that drought conditions continued throughout Texas in March 2011. In April 
2011, abnormally dry and warm weather continued across the entire state. According to drought reports, since 
the beginning of 2011, bushfires devastated thousands of acres almost everywhere (DIR4160, 4158, 4167, 3937, 
4199, 4166, 4120, 4167). By April, the water level in lakes, wetlands and rivers had reached very low levels 
(DIR3667, 4212, 25,155), and voluntary and compulsory reduction in water use was imposed in many areas 
across the state (DIR 24648, 3879). In April and May, the Dallas region in northern Texas picked up drought 
breaking rains (TCMR/4-2011, TCMR/5-2011) which helped reduce the probability of drought before the abnor-
mally warm summer had started (TCMR/6-2011). Drought continued during the summer causing more wildfires 
(DIR4465) and tremendous losses in agriculture statewide (DIR29694, 26,744, 4019, 4022, 14,864, 3965). The 
drought persisted the entire 2011, however there were a few cold fronts that brought important rain over many 
areas in the eastern part of the state (TCMR/11-2011) in November, and the relieved areas experienced temporary 
decrease in drought probability during that month. December 2011 was in general wetter than usual in most of the 
state except in the far west (TCMR/12-2011). This is reflected in the significant decrease in drought probability 
during this month. January 2012 was another wetter than usual month. Substantial rain was observed in all weath-
er stations except in the Panhandle, Rio Grande Valley and most of the Far West (TCMR/1-2012). The drought 
probability maps for the months of January-April 2012 show a drought free area stretching from the Central Great 
Plains to the South Central Plains.

3.3.2.  Comparing RF Drought Indicator With EDDI and SPI Indices in Representing the 2011 Drought

We assessed the agreement between the RF drought indicator and EDDI and SPI in representing the 2011 drought 
during January 2010 and April 2012 using two metrics: correlation and difference in drought onset. The corre-
lation between the RF drought probabilities and SPI is very strong everywhere (Figure 5a). In fact, unsurpris-
ingly, precipitation was found to be the most explanatory variable in discerning “drought” and “non drought” 

Figure 5.  Correlation between RF drought probabilities and (a) SPI, and (d) EDDI. Difference in RF drought onset and each of (b) SPI with a drought threshold of 
−0.8 (i.e., onsetRF – onsetSPI-0.8), (c) SPI with a drought threshold of 0 (i.e., onsetRF – onsetSPI0) and (e) EDDI (i.e., onsetRF – onsetEDDI). Correlations and onsets are 
computed for the period spanning January 2010-April 2012.
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as described in more detail below. Negative correlations were obtained because drought is denoted by negative 
values in SPI and higher (positive) probabilities in RF. In comparison, the correlation between RF and EDDI in 
Figure 5d is high (0.5–0.8) in the western half of the state but weakens in the eastern half of the state, with the 
lowest correlation observed in the Cross Timbers regions.

We examined the difference in drought onset with SPI at the two drought thresholds and over several accumula-
tion periods. Figures 5b and 5c display the results for SPI-0.8 and SPI0 respectively, both computed for 1-month 
accumulation period. Drought appears in RF drought index well in advance of SPI-0.8 across the dry western half 
of the state and the majority of the state. One finding from Figure 3 is that SPI-0.8 tends to miss droughts, which 
according to Figure 5b results from a delayed start of droughts. In contrast, drought appears in RF after SPI0 over 
the majority of the state, with the largest difference observed in the wettest part of the state. The reason is likely 
that SPI does not know how resilient the system is. For example, after several rainy months, water is abundant, 
and a month of abnormally low rain would not necessarily lead to a drought. While SPI accumulated over longer 
time periods than 1 month is likely to better capture the resilience of the system since it has longer P memory, 
at 1 month accumulation period the SPI has higher correlation with RF and a smaller drought onset difference 
(Figure S1 in the Supporting Information S1). It has been reported that SPI computed for a short accumulation 
period is more suitable for use as a drought indicator for immediate impacts (European Commission, 2020). Fig-
ures 5b and 5c suggest that neither of the two drought thresholds is optimal, and a better threshold value is likely 
to be between 0 and −0.8.

Figure 5e shows that the drought appears in RF with a small lag of ±1 month compared to EDDI. RF shows 
drought emergence before EDDI in the majority of the state except areas in the west central and the southwest. 
Considering the low correlation in the wet parts of the state and the low “True negative” score achieved by EDDI 
in Figure 3, EDDI appears to not capture drought dynamics under drought-breaking flash events such as tropical 
storms and hurricanes that hit the eastern part of the state.

The RF drought indicator quantifies the probability of drought rather than its categorical severity as in EDDI, 
SPI, PDSI and USDM. Drought probability represents the conditional probability given the current climate (see 
Section 2.3.2 for details). Monitoring drought probabilities and how they are evolving in time allows for recogniz-
ing a drought before it occurs (probability increases to near 0.5) or intensifies. We argue that drought probabilities 
provide a more reliable quantification of drought than severity categories, as they are not based on distribution as-
sumptions nor are they computed in reference to a climatology. This is unlike the other drought indicators which 
assume a fixed number of droughts (percentile) falling in each drought category during a climatological period. 
Furthermore, the derived drought probabilities take into account the interaction of a range of climate variables in 
the land-ocean-atmosphere system that can influence droughts.

3.4.  Importance of Climate Features in Explaining Droughts

We generated 100 RF models and computed the importance of each predictor variable as the average of its 
conditional permutation importance across all forests. As described in Section 2.3.2, the importance of a given 
predictor variable, for example, ET, is the difference in prediction accuracy before and after permuting ET aver-
aged over all permutations. Table 2 shows the mean and the range of importance of each predictor variable across 
the 100 RF models, and its ranking. All the variables appear to offer useful information to discern “drought” and 

Importance 
rank 1 2 3 4 5 6 7 8 9

Climate 
feature

P ENSO SM SMprev ET CWS PET NDVI Month

Mean 0.089 0.069 0.058 0.0165 0.0073 0.0073 0.0058 0.0038 0.0028

Range [0.084 
– 0.096]

[0.066 
– 0.073]

[0.053 
– 0.064]

[0.0138 
– 0.019]

[0.006 
– 0.0088]

[0.0057 
– 0.008]

[0.0045 
– 0.0072]

[0.0027– 
0.0052]

[0.002 
– 0.0037]

Note. “Mean” (range) is the mean (range of) importance computed across 100 generated RFs.

Table 2 
Importance of Hydro-Climatological Variables in Discerning “Drought” and “No Drought” Measured Using Conditional Permutation Scheme (Strobl et al., 2008)
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“no drought”, since they all have non-zero importance. Also, as expected, precipitation is the climate feature that 
provides the maximum information about drought, followed by ENSO and SM. SMprev comes next, its high im-
portance is likely to come from its provision of moisture memory and a signal of system resilience. ET and CWS 
empower drought predictions equally, followed by PET and NDVI. The month feature was the least important 
variable.

Despite P being more important to drought than PET, PET anomalies can depict the beginning of drought better 
than P anomalies, at least as embodied in EDDI and SPI respectively, as inferred from Figure 5. One example of 
a situation where relying on P anomalies can be misleading is when abnormally low precipitation occurs after 
several wet months. In this case a drought will appear in the SPI signal, whereas in reality water is abundant and 
the lack of rain will not necessarily lead to drought emergence. Another example is that abnormally high PET 
can lead to drought even when precipitation is near normal (Lukas et al., 2017) in which case, drought will not 
be indicated by SPI.

3.5.  RF Forecast Models

In a further analysis, we use RF to build three forecast models—RF F1, RF F2 and RF F3—that quantify drought 
1, 2 and 3 months ahead, respectively. In the training process, each event record consists of a label (“drought”, 
“no drought”) observed at a month, and climate features observed 1 (RF F1), 2 (RF F2) and 3 (RF F3) months 
before. We assess the predictive skill of these forecast models following the same out-of-sample testing approach 
described in Section 2.5. Figure 6 illustrates the results of the out-of-sample performance of RF drought indicator 
and each forecast model across 100 different testing datasets. The three forecast models score above 83% in “Ac-
curacy”, “True positive”, “True negative”, and “Success ratio” across the majority of the out-of-sample testing, 
but as expected, could not beat the scores of the RF drought indicator with concurrent predictor variables. These 
values are comparable or better than EDDI, PDSI or SPI with concurrent predictor variables (Figure 3) and so 
offer hope for successful short-term predictive capacity.

We also assessed how well the forecast models replicate the probability derived by the RF drought indicators. For 
this analysis, we calculate four new performance metrics at each of the testing events, and 100 testing datasets 
to measure the discrepancy of the forecast models with the RF drought indicator. The employed metrics are root 
mean squared error (RMSE), standard deviation (SD) difference, correlation and mean absolute bias. The results 
in Figure 7 show that the discrepancy between forecasted drought probabilities and the actual drought probability 
slightly increases as the forecast period increases as expected.

Finally, Figure 8 shows maps of the correlation of the three forecast models with the RF drought indicator dur-
ing the drought episode January 2010-April 2012. Similar to our previous findings from Figure 7, correlation 
decreases as the forecast period increases, particularly in the wet east of the state. The lag in the drought onset 

Figure 6.  Performance results of RF classifier and RF drought indicators, RF F1, RF F2 and RF F3 at testing samples across 
100 different sub-sampling of training and testing samples. Performance scores are explained in Section 2.5.
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is presented in Figures 8d–8f for RF F1, RF F2 and RF F3 respectively. The onset difference maps show that the 
onset lag is in the range ±1 in the west for all the three forecast models, whereas in the east the forecast models 
tend to delay drought as the forecast period increases.

Figure 7.  Performance of the three forecast models RF F1, RF F2 and RF F3 relative to RF drought indicator.

Figure 8.  Correlation between RF drought probabilities and (a) RF F1, (b) RF F2, and (c) RF F3. Difference in RF drought onset and each of (d) RF F1, (e) RF F2, and 
(f) RF F3.
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4.  Discussion
4.1.  The New RF Drought Indicator Versus USDM

The advanced capabilities of the RF approach and USDM in discerning 
“droughts” and “non droughts” compared to EDDI, SPI and PDSI highlight 
the importance of analyzing the collective changes in climate features to bet-
ter support drought quantification.

USDM is the current state of the art index of the weekly drought conditions 
in the U.S.; the new RF drought indicator provides a valuable counterpart to 
USDM for drought monitoring at the monthly scale. There are however sev-
eral advantages in using the RF approach: (a) the RF algorithm is developed 
once, then building drought probability maps from current climate data is 
an automated process. In comparison, deriving USDM maps is not automat-
ed as it incorporates subjective opinion and experts' interpretation; (b) The 
spatial resolution of the RF drought indicator is 0.5° (or higher where finer 
resolution inputs are available), whereas USDM provides a big picture of 
the drought conditions over 10 Texan climate regions. The sparse resolution 
of USDM did not allow it to resolve droughts at the grid scale and resulted 
in prediction errors in the out-of-sample tests (Figure  3); (c) USDM pro-
vides discrete drought categories, with limited ways for analyzing them, and 
no clear method on how to aggregate them from weekly to other temporal 
scales (e.g., monthly). In comparison, the RF algorithm can be trained on 
data aggregated over several months and then applied to quantify droughts 
with longer time frames; (d) The RF approach shows good forecast capabil-
ities, while USDM does not have any forecast capabilities. This is true both 
in terms of the lag models demonstrated here, and the applicability of the RF 
approach to climate model projection data.

4.2.  Circumstances During Droughts Not Detected by SPI and EDDI

The occurrence of drought impact is multifactorial. Drought indices typi-
cally identify droughts by tracking the relative departures from normal con-
ditions of water-related climate features (e.g., P in SPI, PET in EDDI) or 
the gap between water supply and demand (e.g., P and PET in PDSI). The 
machine learning drought indicator presented here additionally shows that 
there are some unexpected circumstances where there are impactful droughts 
not encompassed by traditional drought metrics. Figure 9 shows a suite of 
circumstances where drought events have not been identified by either SPI 
nor EDDI. For instance, despite rain (7th decile P) at the beginning of sum-

mer 2016, drought in Pecos developed from high atmospheric water demand (10th decile PET) due to elevated 
temperatures, vegetation started to turn brown (DIR35974, 6th decile NDVI) and soil moisture dropped to its 
lowest levels. In comparison, drought in Bastrop at the end of winter 2015 was characterized by very low rates 
of rain (1st decile P) and large decline in groundwater (2nd decile CWS). Soil moisture was abundant despite 
drought as a result of cold weather and the reliance of vegetation, that is, deep-rooted oak trees, on groundwater. 
In Coleman, drought emerged from the combined effect of high atmospheric water demand (10th decile PET) 
and low precipitation rates (1st decile). High ET rates (9th decile) led moisture to drop quickly (from 8th decile 
in the previous month to 3rd decile. These conditions marked the beginning of drought in Coleman in summer 
2016. Continuing drought in Wheeler and Gray in winter 1996 was characterized by low rates of P, PET and ET, 
and a decline in groundwater. Droughts in Hidalgo were driven by low P rates (third and 2nd decile) and high 
PET (ninth and 10th decile) in the summer of 1984 (top row) and 2016 (bottom row) respectively. The drought 
event was characterized with a large decrease in groundwater in 1984 (1st decile CWS). In comparison, during 
the 2016 drought, soil moisture declined significantly (from decile eighth to 1st decile). SPI and EDDI which 
track anomalies in P and PET respectively, were not able to identify any of these drought events. By focusing on 

Figure 9.  The suite of hydrological circumstances and location (Texan 
counties) where impactful monthly drought events were not detected by EDDI 
and SPI. Circumstances are expressed as the deciles of precipitation (P), 
surface soil moisture (SM), PET, actual evapotranspiration (ET), change in 
water storage (CWS), Normalised Difference Vegetation Index (NDVI), and El 
Niño-Southern Oscillation (ENSO) that occurred during drought.
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the actual drought events, machine learning can identify all the combinations of conditions that lead to drought, 
as evidenced by observations, rather than relying on a priori intuition.

4.3.  Transferability of the RF Approach to New Regions

The range of factors that affect the onset and development of droughts are a mixture of large-scale factors that 
are shared among different regions over land (such as a lack of precipitation) and unique local scale factors such 
as vegetation properties, land cover, water-related activities, and water resources management. Machine learning 
allows us to incorporate both large- and local-scale information to identify droughts.

The new RF drought indicator was developed by training a RF algorithm on patterns within the Texan region. 
Therefore, the particular RF drought indicator derived here is specific to Texas and should not be used to monitor 
and quantify droughts in new locations outside Texas. Clearly the physical processes linked with the initiation and 
persistence of drought are different over different regions around the world. One obvious example is that droughts 
in Texas are related to the cold phase of ENSO, whereas in many regions on land, droughts are related to the 
warm phase of ENSO (i.e., El Niño, e.g., Australia). However, the approach is entirely portable, assuming new 
RF models are developed for new locations and historical drought data of sufficient quantity and reliability exist 
in those locations. For example, in Europe, reports on historical drought events are available from The European 
Drought Reference database and the European Drought Impact Report Inventory and accessed through https://
www.geo.uio.no/edc/droughtdb/. In Australia, monthly climate reports describing the wet and dry conditions 
across the state are produced by the Australian Bureau of Meteorology and are made publicly available at http://
www.bom.gov.au/climate/current/statement_archives.shtml.

4.4.  Future Research Directions

There are a number of key processes linked with the initiation and persistence of drought that could be incorpo-
rated to improve the predictive skills of the RF drought indicator but were not included here, for example, zonal 
moisture advection (Erfanian & Fu, 2019). Nevertheless, as new relevant climate variables become available, it is 
easy to test their ability to improve predictions, and if justified, incorporate them as additional predictors.

We used a RF to generate spatial predictions of drought. However, the spatial location of points was ignored 
in the modeling process, so that spatial autocorrelation was not accounted for. Hengl et al. (2018) developed a 
new framework called Random Forest for spatial data (RFsp) that extends RF to account for spatial dependence. 
The RFsp framework incorporates distances from observation points as predictor variables and therefore, adds 
geographical proximity effects into the prediction process. More recently (Georganos et al., 2019), developed 
a novel geographical implementation of RF, named Geographical Random Forest (GRF) that addresses spatial 
heterogeneity by disaggregating RF into geographical space in the form of local sub-models. GRF is implement-
ed in the R package SpatialML (http://lctools.science/). We anticipate that applying any of the RFsp or the GRF 
approach in the future will further improve the performance of the RF drought indicators and the predictive skills 
of the RF forecasting models. It is important to note that both approaches require a larger number of grid cells 
than what was used here.

Another topic for future research is using deep learning as an alternative, and more powerful approach than RF to 
capture the spatio-temporal characteristics of droughts (Reichstein et al., 2019). A few studies implemented deep 
learning for drought quantification (e.g., Deo & Şahin, 2015; Shen et al., 2019). These studies used drought indi-
cators as spatially and temporally continuous labels. However, this approach is not optimal as drought indicators 
suffer from biases and should not be used as “ground-truth” labels. Given the absence of spatially and temporally 
continuous drought data, using deep learning to quantify droughts remains challenging.

5.  Conclusions
In contrast to most scientific drought metrics, in this work we used recorded drought impacts as our observational 
definition of drought, and used a RF model to establish an empirical relationship between drought impact and a 
broad range of drought-related climate predictors. The derived RF drought indicator performed as well out-of-
sample as the assimilated drought product USDM. However, unlike USDM, the approach offers considerable 
predictive ability, both in the short-term drought predictions and use with climate projections. Also, this approach 

https://www.geo.uio.no/edc/droughtdb/
https://www.geo.uio.no/edc/droughtdb/
http://www.bom.gov.au/climate/current/statement_archives.shtml
http://www.bom.gov.au/climate/current/statement_archives.shtml
http://lctools.science/
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was able to predict unseen drought impact events with far greater success than existing climate-variable based 
drought metrics, such as SPI, PDSI or EDDI. While these drought metrics often give us a clear indication of 
drought impacts, drought impact is multifactorial. The presented approach allows us to utilize drought impact 
data to understand the full suite of circumstances that lead to impactful droughts. While Texas was used as a test 
case here, the approach is applicable to any region with sufficient spatiotemporal drought records.

Data Availability Statement
Data used in this is available through these papers (Dorigo et  al.,  2017; Gruber et  al.,  2017,  2019; Harris 
et al., 2014; Hobeichi et al., 2021; Humphrey & Gudmundsson, 2019; Liu et al., 2012; Pinzon & Tucker, 2014; 
Schneider et al., 2018; Smith & Sardeshmukh, 2000) or described in Wilhite et al. (2007). We thank all the data 
owners for making their data publicly available.
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