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A B S T R A C T   

NARCliM1.5 is the second generation of New South Wales and Australian Regional Climate Modelling (NARCliM) 
project, which is designed to produce an ensemble of regional climate projections for CORDEX Australasia and 
southeast Australia. The selected global climate models (GCMs) are used to drive Weather Research and Fore
casting (WRF) model for dynamical downscaling. In this study, we evaluate how well the two generations of 
NARCliM (N1.0 and N1.5) represent the observed record for 12 selected climate extremes and examine their 
projected changes for southeast Australia. N1.5 ensemble substantially improves upon N1.0 in capturing the 
spatial patterns of precipitation extremes, however, there is little difference between the two ensembles for 
temperature extremes. Both N1.0 and N1.5 underestimate dry extreme (consecutive dry day - CDD), hot extremes 
(warmest daily maximum temperature – TXx, and number of days when maximum temperature is greater than 
35 ◦C - TXge35) and daily temperature range (DTR) but overestimate wet extremes (annual sum of daily pre
cipitation above 99th percentile - R99p, consecutive wet days - CWD, days when precipitation is at least 10 mm - 
R10mm, maximum 1-day precipitation - Rx1Day and total wet day precipitation -PRCPTOT) and cold extreme 
(coldest daily minimum temperature - TNn). N1.0 and N1.5 project different spatial patterns of future changes in 
precipitation extremes but similar changes in temperature extremes. Differences in climate extremes between 
N1.0 and N1.5 could be attributed to the driving GCMs. The combined future projections of both N1.0 and N1.5 
provide a more complete sampling of the future change space. Future projections indicate that precipitation and 
temperature extremes will become more intense, raising implications for future planning and risk management.   

1. Introduction 

Extreme climate events have damaging impacts on human societies, 
ecosystems, and economies, both globally and in Australia (Seneviratne 
et al., 2012). Multiple studies indicate that climate change has increased 
frequency and/or intensity of extreme temperature and precipitation 
events (Fischer and Knutti, 2015; Perkins-Kirkpatrick and Gibson, 2017; 
Prein et al., 2017; Wang et al., 2017). Globally, about 18% of moderate 
daily precipitation extremes over land and about 75% moderate daily 
hot extremes over land are attributable to observed warming (Fischer 
and Knutti, 2015). Climate extremes can result in 18%–43% (the range 
describes the differences between crop types) of variance of global crop 

yield anomalies (Vogel et al., 2019). Heat related extremes in Australia 
lead to annual economic burden of around $6.2 billion for the Australian 
workforce (Zander et al., 2015). 

Global climate models (GCMs) have been used as a primary tool for 
examining the past and future changes in climate extremes at global and 
continental scales (Alexander and Arblaster 2017; Ongoma et al., 2018; 
Ayugi et al., 2021). However, their coarse resolutions mean they are not 
suitable for regional and local applications (Ekström et al., 2015). 
Dynamical downscaling of coarse resolution outputs from GCMs via 
regional climate models (RCMs) helps better resolve the drivers of 
regional climate, e.g., complex topography, convective processes, and 
produce climate projections at high resolution. RCM simulations are 
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fundamental components for climate services on national (e.g., 
Kjellström et al., 2016; Skelton et al., 2017) and regional scales (e.g., 
Jacob et al., 2014). Multiple studies have reported that downscaling can 
improve accuracy of the historical simulated climate when comparing to 
the driving GCMs (Di Luca et al., 2013, 2016a; Torma et al., 2015; Dosio 
et al., 2015, 2019; Cheneka et al., 2016; Choudhary et al., 2019; Lee 
et al., 2019; Solman and Blázquez 2019; Gnitou et al., 2021; Qiu and Im, 
2021). 

Multiple studies have used regional climate simulations to assess 
future changes in climate extremes such as extreme rainfall (Bao et al., 
2017; Evans et al., 2017), climate extreme indices (Herold et al., 2021) 
and extreme fire weather (Di Virgilio et al., 2019), which highlighted the 
importance of regional climate modelling in assessment of future 
changes in climate extremes at regional scales. 

The NARCliM (New South Wales and Australian Regional Climate 
Modelling) project is designed to produce 50 km and 10 km resolutions 
regional climate projections for Australasia and Southeast Australia, 
respectively (Fig. 1) (Evans et al., 2014). The first generation of NAR
CliM (N1.0) was delivered in 2014 with several studies having evaluated 
the N1.0 historical simulations (e.g., Ji et al., 2016; Fita et al., 2016; 
Olson et al., 2016) and observing that N1.0 can simulate observed 
climate well, even if most of simulations have wet and cold biases. Other 
work has demonstrated that N1.0 can provide added value to the 
simulated surface variables such as precipitation, maximum and mini
mum temperatures when compared to the driving GCMs (Di Luca et al., 
2013, 2016a). Since N1.0 was delivered in 2014, it has been widely 
applied in long-term planning and scientific research, such as assessing 
changes in rainfall extremes (Cortés-Hernández et al., 2015; Bao et al., 
2017; Nishant and Sherwood, 2021), determining changes in frequency 
and intensity of extra-tropical low pressure systems (Ji et al., 2015; 
Pepler et al., 2016; Di Luca et al., 2016b), fire-weather and fuel load 
projections (Clarke et al., 2016; Clarke and Evans 2019; Di Virgilio et al., 
2019), near surface winds (Evans et al., 2018), vertical temperature and 
temperature inversions (Ji et al., 2018, 2020), quantifying the impact of 

urban expansion on local temperature extremes (Argüeso et al., 2014, 
2015), assessing future changes in cropping (Macadam et al., 2016; Liu 
et al., 2019; Wang et al., 2019), hydrological impact and wet/dry spells 
(Evans et al., 2017), and natural hazards (Herold et al., 2021). 

Whilst the N1.0 datasets have been applied successfully in multiple 
contexts, an independent evaluation and multiple technical workshops 
conducted for end-users have revealed some limitations (Table S1) in the 
N1.0 experimental design such as older phases of CMIP GCMs (i.e. 
CMIP3), non-continuous simulations for three discrete 20-years epochs, 
and use of a single emission scenario. To address those limitations of 
N1.0, a second generation of enhanced and updated NARCliM simula
tions (N1.5) was performed. 

N1.5 simulations were designed not to replace N1.0 simulations, but 
rather to complement them. N1.5 simulations are performed using two 
of the three RCMs used in N1.0 and were run on the same domains as 
N1.0 to provide an expanded dataset. By using the same RCMs and 
domains as for N1.0, users can conveniently use either or both the N1.0 
and N1.5 datasets without consideration of the impacts from change in 
the boundary and/or regional model physics. In N1.5, three CMIP5 
GCMs were selected and downscaled by two RCMs each for two 
Representative Concentration Pathways (RCP8.5 and RCP4.5) for 
1950–2100, providing 12 regional climate simulations (Nishant et al., 
2021). 

N1.5 was evaluated and compared with N1.0 for simulating histor
ical mean temperature and precipitation over southeast Australia 
(Nishant et al., 2021; Di Virgilio et al., 2020). The results indicated that 
N1.5 simulations substantially improve the skill in capturing seasonal 
pattens and magnitudes of precipitation, but simulate similar results for 
maximum and minimum temperatures, when compared with N1.0. 
Together, N1.0 and N1.5 ensembles provide an improved, more 
comprehensive data set for studying climate change. 

However, it is not clear whether N1.5 simulations can improve skill 
in capturing climate extremes. In this study we expand the work of 
Nishant et al. (2021) and assess N1.0 and N1.5 simulations for their 

Fig. 1. Map showing Weather Research and Forecasting (WRF) model domain with grid spacing of 10 km (NARCliM domain shown with red outline). QLD, NSW, 
VIC, SA and NT are initial of Queensland, New South Wales, Victoria, South Australia and Northern Territory, which are Australia’s states. Brisbane, Sydney, 
Melbourne, Adelaide and Canberra are capital cities. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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ability to simulate observed climate extremes. We undertake and 
compare future projections of climate extremes for N1.0 and N1.5. 

2. Data and methods 

2.1. NARCliM1.0 (N1.0) 

N1.0 is an ensemble of 12 GCM/RCM combinations (Evans et al., 
2014). The four GCMs (MIROC3.2, ECHAM5, CGCM3.1 and 
CSIRO-MK3.0) were selected from the CMIP3 ensemble based on their 
model performance over Australasia, independence of their errors, and 
to span the full range of potential future changes in precipitation and 
temperature over south-eastern Australia (Fig. 1). Each of these four 
GCMs were dynamically downscaled using three selected RCMs (R1, R2 
and R3). The three RCM configurations are distinct combinations of 
physics schemes (Table S2) of the Weather Research and Forecasting 
(WRF) v3.3 model (Skamarock and Klemp, 2008), which were selected 
from 36 physics scheme combinations based on model performance and 
independence of their errors (Evans et al., 2012, 2013; Evans and Ji 
2012; Ji et al., 2014). All RCM simulations were run for three 20-year 
periods: the recent past (1990–2009), near future (2020–2039) and far 
future (2060–2079), at 10-km resolution over Southeast Australia, 
embedded within the 50-km resolution domain of the CORDEX Aus
tralasia region (Fig. 1), under the SRES A2 scenario (Solomon et al., 
2007) which reflects the ‘business-as-usual’ scenario in CMIP3 and, at 
the time of development, best illustrated the assumptions about how 
global emissions were tracking. 

The three selected RCMs were also run by using the National Centres 
for Environmental Prediction reanalysis dataset (Kalnay et al., 1996) for 
1950–2009 to assess the capability of RCMs to simulate the observed 
regional climate (Ji et al., 2016). 

2.2. NARCliM1.5 (N1.5) 

N1.5 was designed to address three major limitations in N1.0: the use 
of older CMIP3 GCMs; a single emission scenario; and the simulation of 
only a selection of limited time periods. N1.5 consists of three CMIP5 
GCMs (ACCESS1.0, ACCESS1.3 and CanESM2) downscaled using two of 
the three RCMs used in N1.0 for 1951–2100 under two future emission 
scenarios. The third RCM (R3) from N1.0 was excluded due to unsatis
factory performance (Di Virgilio et al., 2019a). CMIP5 uses emissions 
scenarios called ‘representative concentration pathways’ (RCPs) and 
N1.5 uses both RCP4.5 and RCP8.5. These scenarios reflect a medium 
level of mitigation and a high emissions scenario, respectively. 

The three CMIP5 GCMs were selected using a similar performance 
evaluation as the CMIP3 GCMs in N1.0. That is, considerations include 
their performance in simulating temperature and precipitation, repre
sentation of various climate processes and phenomena and an inde
pendence ranking. In this study we use the highest emission scenario for 
both generation of GCMs (i.e., SRESA2 from CMIP3 and RCP8.5 from 
CMIP5). The SRES A2 and RCP8.5 emission scenarios are most compa
rable yet slightly different. Studies have shown that global climate 
projections are approximately similar across CMIP3 and CMIP5, espe
cially for temperature increases (Flato and Coauthors, 2013; Knutti and 
Sedláček 2013; Moise et al., 2015). This suggests that they can be 
combined into expanded ensembles. We therefore select three CMIP5 
GCMs to fill unsampled space within the combined CMIP3 and CMIP5 
ensembles. The three selected CMIP5 GCMs have similar temperature 
increases but spanning the range of precipitation changes from “not 
much change” to “moderate decrease” to “large decrease” (Nishant 
et al., 2021). Thus, GCMs in N1.5 complement those in N1.0 in terms of 
the range of projected climate change (Fig. 2). 

Each N1.5 simulation was run from 1950 to 2100 continuously using 
the WRF model (1950 is taken as spin-up period). We use a newer 
version of WRF (version 3.6.0) in N1.5 compared to N1.0 (version 3.3) 
but keep using the same RCM physics configuration. This change, 

however, did not impact model simulation (Nishant et al., 2021). The 
150-year GCM driven simulations are also accompanied by ERA-Interim 
reanalysis (Dee et al., 2011) forced simulations for 1979–2013. The N1.5 
experimental setup is summarised in Table 1 with further information 
provided in Table S2. 

2.3. Observations 

The observational data in the study are from the Australian Gridded 
Climate Dataset (AGCD, Evans et al., 2020). The daily gridded maximum 
and minimum temperatures, and precipitation data set has a spatial 
resolution of 0.05◦ (~5 km) and is interpolated from observations at 
stations across the Australian continent. Most of those stations are in the 
more heavily populated coastal regions with far fewer stations inland 
and over high elevation areas. Observations and simulations are not at 
the same resolutions. Therefore, for comparison with observations, we 
interpolate observations to NARCliM grids using the conservative area 
weighted re-gridding scheme from the Climate Data Operators 
(Schulzweida et al., 2006). 

2.4. Method 

While extreme climate and weather events are generally multifac
eted phenomena, in this study we evaluate climate extremes based on 
daily precipitation and temperature as defined by Expert Team on 
Sector-specific Climate Indices (ET-SCI; Alexander and Herold, 2015; 
Herold and Alexander, 2016). We use the ClimPACT version 2 software 
to calculate the ET-SCI indices (https://climpact-sci.org/), focussing on 
daily precipitation, maximum and minimum temperatures. 

Although ClimPACT produces more than 33 core indices, we select 
12 indices (Table 2) based on the following considerations: 1). To cap
ture key aspects of climate extremes; for example we choose absolute 
indices (e.g., maximum 1 day precipitation (Rx1day), total precipitation 
(PRCPTOT), hottest day (TXx), coldest day (TNn)), threshold-based 
indices (e.g., number of heavy rain days (R10mm), number of days 
when maximum temperature is greater than 35 ◦C (TXge35)), percentile 
indices (e.g., total annual precipitation from very heavy rain days 
(R99p)), and duration indices (e.g., consecutive wet days (CWD), 

Fig. 2. Scatter plot of future change (differences between 2060-2079 and 
1990–2009) in rainfall and temperature over the land part of the NARCliM 
domain (Fig. 1) for 34 CMIP5 (blue) and 14 CMIP3 (red) GCMs that passed the 
performance test. Larger dots represent the three GCMs selected for N1.5 (blue) 
and the four GCMs selected for N1.0 (red). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

F. Ji et al.                                                                                                                                                                                                                                         

https://climpact-sci.org/


Weather and Climate Extremes 38 (2022) 100526

4

consecutive dry days (CDD), warm spell duration index (WSDI), cold 
spell duration index (CSDI). 2). To capture extremes which have an 
impact on society and infrastructure; for example, extreme indices like 
TXge35, CSDI, and WSDI have large impacts on health (Zivin and 
Shrader, 2016), whereas indices like Rx1day, DTR, CDD, and CWD have 
large impacts on agriculture and water resources and the economy 
(Tabari, 2020; Pei et al., 2021). 

We use the overlapping periods between N1.0 and N1.5 to compare 
bias and future projections, i.e., 1990–2009 is used to assess bias be
tween N1.0/N1.5 and observation; and 1990–2009 and 2060–2079 are 
used for future projections. Since N1.5 historical simulations were 
available until 2005, we take the remaining four years (2006–2009) 
from RCP8.5 simulations noting there are minimal differences between 
all RCP future scenarios for this period. 

Some widely used metrics such as bias, root mean square error 
(RMSE) and spatial correlation (R) are used to quantify the performance 
for each simulation and ensemble means. 

When assessing future changes (compared to historical period) and 
biases (compared to AGCD observations) in climate extremes we 
calculate the statistical significance for each grid cell using t-test (α =
0.05) assuming equal variance. Results on ensemble mean statistical 
significance were then separated into three classes following Tebaldi 
et al. (2011) to identify regions of statistically significant change with 
model agreement. This method considers the presence of internal 
climate variability and assesses the degree of consensus between models 
on the significance of a change. For each grid cell, when 50% or more of 
the model ensemble (of which there are 12 members in N1.0, 6 members 
in N1.5 and 18 members in combined ensemble N1.0+N1.5 (hereafter 
N1.X) show significant change and at least 80% of those models agree on 

the direction of change, the difference in that grid cell is considered 
significant (indicated with stippling in the figures). If at least 50% of the 
model ensemble shows significant change, but less than 80% of those 
models agree on the direction of change, the multi-model mean is not 
shown in the subsequent figures but instead the grid cell is shown in 
white, indicating model disagreement on the projected change. Finally, 
if less than 50% of the model ensembles show a significant change, we 
show the multi-model mean in the subsequent figures but without 
indication of significance (no stippling). 

We assess future changes and biases at annual time scale for all ex
tremes, and seasonal time scale for those extremes available at monthly 
scale. The four seasons are summer (December-January-February, DJF), 
autumn (March-April-May, MAM), winter (June-July-August, JJA) and 
spring (September-October-November, SON) in the Southern 
Hemisphere. 

3. Results 

3.1. Comparison of N1.0 and N1.5 for historical period (1990–2009) 

The main analyses in this section describe the ensemble mean bias in 
N1.0 and N1.5 with respect to observations for the 12 selected precipi
tation and temperature extremes. We compare climate indices at annual 
and seasonal scales. Maps of seasonal mean biases and the absolute 
values of these variables in the individual N1.0 and N1.5 simulations are 
available in the supplementary material (Figs. S1-7 and Tables S3–5). 

3.1.1. Precipitation related climate extremes 
The strongest precipitation extremes are observed at the annual 

Table 1 
NARCliM1.0 and NARCliM1.5 simulations used in this study. Here for clarity, blue and orange colours differ
entiate between N1.0 and N1.5 simulations. 
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timescale and in the summer (DJF) season. For the wet precipitation 
extremes (PRCPTOT, Rx1Day, R10mm, CWD, and R99p), higher values 
are mostly observed along the eastern coastal regions of the domain, 
where most of the Australian population resides (Fig. 3 a-d, f). For the 
dry precipitation extreme (CDD), higher values are observed inland over 
the north-west part of the domain (Fig. 3e). In addition to the eastern 
coastal regions, high elevation regions (Great Dividing Range in south- 
eastern Australia) also receive high extreme precipitation for R10mm, 
Rx1Day and PRCPTOT (Figs. S1–3). 

Both N1.0 and N1.5 capture the spatial patterns of observed pre
cipitation extremes well (Table S5); however, both tend to overestimate 
wet extremes (R99p, CWD, R10mm, Rx1Day and PRCPTOT) along the 
Great Dividing Range (Fig. 3g-j, 3m-p, 3l, 3r), and underestimate dry 
extreme (CDD) inland (Fig. 3k, q). 

In N1.0, CSIRO-MK-3.0 and MIROC3.2 driven simulations show the 
largest overestimation for wet extreme and underestimation of dry ex
tremes, in contrast, the CCCMA3.1 driven simulations are closest to the 
observation (Tables S3–4). Similarly, CanESM2 driven simulations and 
ACCESS1.3 driven R2 simulation generally have smaller biases and 
RMSEs than other simulations in N1.5 (Tables S3–4). In the same GCM- 
driven simulations, R2 generally has smaller bias than R1 and R3 sim
ulations in N1.0, and R1 simulation in N1.5, especially for R99p, 
R10mm, Rx1Day, and PRCPTOT (Tables S3–4). 

Overall, the ensemble means for N1.5 perform better than N1.0 for 
all wet extremes in capturing the spatial patterns of the precipitation 
extremes (Fig. 3, Table S5). During the wettest (DJF) season the biases of 
R10mm, Rx1Day and PRCPTOT in N1.5 are substantially smaller than 
those in N1.0 (Figs. S1–3). This also leads to small annual biases (Fig. 3). 

3.1.2. Temperature related climate extremes 
For the temperature extremes, higher values are mostly observed in 

inland Australia and over the north-western part of the domain (Fig. 4). 
The strongest temperature extremes are observed in Summer (DJF) 
(Figs. S5–7) except for DTR (Fig. S4). All simulations generally capture 
the spatial pattern of observed temperature extremes well, however, 
there is large variation in sign and magnitude of biases among the 
different simulations, seasons and for different temperature extremes 
(Tables S3–4). 

Both N1.0 and N1.5 ensemble means show similar biases (~2–3 
days) in magnitude for WSDI and CSDI, however, there are differences in 
the sign of bias for WSDI (Fig. 4k, q). Most of the N1.0 ensemble 
members (except for the ECHAM5 driven simulations) show cold biases 
in WSDI, whereas N1.5 ensemble members show slight warm bias 
(Table S3). In contrast, the pattern of biases for CSDI are similar between 
N1.0 and N1.5 for ensemble mean (Fig. 4l, r) and individual simulations 
(Table S5). 

Both N1.0 and N1.5 underestimate annual ensemble means of DTR 
by ~ 1–3 ◦C over most of the domain (Fig. 4i, o). The strongest seasonal 
biases (>5 ◦C) are observed in autumn (MAM) and winter (JJA) seasons 
(Fig. S4). Biases in CCCMA3.1 driven simulations are generally smaller 
than others in N1.0 and ACCESS1.0 driven simulations have slightly 
larger biases in N1.5 (Tables S3–4). 

For TXge35, a cold bias is present for both NARCliM ensembles 

Table 2 
List of ET-SCI Indices evaluated in these study.  

No Index Definition Units Timescale Sectors 

1. R99p Total annual 
precipitation 
from very heavy 
precipitation 
days (Annual sum 
of daily 
precipitation > 
99th percentile) 

mm Annual Coasts 

2. CWD Consecutive wet 
days (Maximum 
annual number of 
consecutive wet 
days (when 
precipitation >¼
1.0 mm)) 

days Annual Coasts 

3. CDD Consecutive dry 
days (Maximum 
number of 
consecutive dry 
days (when 
precipitation < 
1.0 mm)) 

days Annual Health, 
agriculture and 
food security, 
water resources 
and food 
security, 
disaster risk 
reduction, 
forestry/GHGs 

4. R10mm Days when 
precipitation is at 
least 10 mm 

days Annual/ 
Monthly 

Coasts 

5. Rx1Day Amount of 
precipitation 
from very wet 
days (Maximum 
1-day 
precipitation) 

mm Annual/ 
Monthly 

Agriculture and 
food security, 
water, coasts, 
disaster risk 
reduction, 
forestry/GHGs 

6. PRCPTOT Total wet-day 
precipitation 
(Sum of daily 
precipitation >¼
1.0 mm) 

mm Annual/ 
Monthly 

Agriculture and 
food security, 
water, water 
resources and 
food security, 
forestry/GHGs 

7. CSDI Cold spell 
duration 
indicator (Annual 
number of days 
contributing to 
events where 6 or 
more consecutive 
days experience 
minimum 
temperature < 
10th percentile) 

days Annual Health, 
agriculture and 
food security, 
coasts, disaster 
risk reduction, 
energy, 
fisheries, 
forestry/GHGs, 
cryosphere 

8. WSDI Warm spell 
duration 
indicator (Annual 
number of days 
contributing to 
events where 6 or 
more consecutive 
days experience 
maximum 
temperature > 
90th percentile) 

days Annual Health, 
agriculture and 
food security, 
water resources 
and food 
security, coasts, 
disaster risk 
reduction, 
energy, 
fisheries, 
forestry/GHGs, 
cryosphere 

9. DTR Average range of 
maximum and 
minimum 
temperature 

◦C Annual/ 
Monthly 

Forestry/GHGs 

10. TXge35 Number of days 
when maximum 
temperature >¼
35 ◦C 

days Annual/ 
Monthly 

Health, 
agriculture and 
food security, 
disaster risk 
reduction, 
energy, 
forestry/GHGs 

11. TXx oC  

Table 2 (continued ) 

No Index Definition Units Timescale Sectors 

Warmest daily 
maximum 
temperature 

Annual/ 
Monthly 

Agriculture and 
food security, 
energy, 
forestry/GHGs, 
cryosphere 

12. TNn Coldest daily 
minimum 
temperature 

oC Annual/ 
Monthly 

Agriculture and 
food security, 
energy, 
forestry/GHGs, 
cryosphere  
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(Fig. 4j, p). At the annual timescale, except for CCCMA3.1 and ECHAM5 
driven N1.0 simulations, all the other simulations show a strong un
derestimation of ~50 days over the northwest of the domain and small 
bias ~10 days along the coastal regions (Not shown). In contrast, 
CCCMA3.1 and ECHAM5 driven N1.0 simulations show overestimation 
in the north-eastern part of the domain and underestimation in the 
northwest domain. A similar underestimation can be observed across 
N1.5 simulations (Tables S3–4). TXge35 itself is the largest in Summer 
(DJF), the largest underestimation is seen in summer and the smallest in 
winter (Fig. S5). 

For TXx, similar results are observed as TXge35 (Tables S3–4). Here, 
except for CCCMA3.1 and ECHAM5 driven N1.0 simulations, all other 
simulations show cold biases in TXx. CCCMA3.1 and ECHAM5 driven 
N1.0 simulations show slight warm bias in the north-eastern part of the 

domain. Bias in TXx for the ACCESS1.0-driven simulations is slightly 
larger than other simulations in N1.5. On average, similar biases are 
evident in N1.0 and N1.5 ensemble (Fig. 4g, m). Bias in TXx for each 
season is similar with small warm bias along southeast coastal region 
and cold bias inland (Fig. S6). 

For TNn, both N1.0 and N1.5 ensembles show similar warm bias 
(~1–2 ◦C) at the annual timescale (Fig. 4h, n). Seasonal biases are larger, 
especially for autumn and winter seasons with more than 2 ◦C warm 
bias, whereas both generally show a cold bias (~2–3 ◦C) in summer and 
spring seasons (Fig. S7). All simulations in N1.0 and N1.5 have similar 
pattern and magnitude of bias (Tables S3–5). 

In general, the ensemble means for N1.5 are similar to N.10 for all 
temperature extremes in capturing the spatial patterns of the tempera
ture extremes. Both N1.0 and N1.5 underestimate hot extremes (TXx and 

Fig. 3. Climatological mean biases of six precipitation related extremes relative to the Australian Gridded Climate Data dataset (AGCD; top panel a–f), the N1.0 
ensemble mean (central panel g–i), N1.5 ensemble mean (bottom panel m–r) at the annual timescale. Data span 1990–2009. Stippling indicates statistically sig
nificant differences using a student’s t-test at the 95% confidence level. 

Fig. 4. Climatological mean biases of six temperature related extremes relative to the Australian Gridded Climate Data dataset (AGCD; top panel a–f), the N1.0 
ensemble mean (central panel g–i), N1.5 ensemble mean (bottom panel m–r) at the annual timescale. Data span 1990–2009. Stippling indicates statistically sig
nificant differences using a student’s t-test at the 95% confidence level. 
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TXge35) and daily temperature range, and overestimate cold extreme 
(TNn). 

3.2. Domain averaged results 

To compare the domain-averaged results for N1.0 and N1.5, Taylor 
diagrams (Taylor 2001) for model evaluation are examined. Taylor di
agrams provide a concise statistical summary of how well patterns 
match each other in terms of their correlation, their root-mean-square 
error (RMSE) and the ratio of their variances. The Taylor Diagram in
dicates the baseline observed point where correlation is 1 and RMSE 
equals 0. If the simulation point is close to the observed point, it means 
that they are similar in terms of standard deviation, their correlation is 
high, and their RMSE is close to zero. 

In this section, we evaluate and compare domain averaged climate 
extremes for each N1.0 and N1.5 simulations and their seasonal (where 
applicable) and annual ensemble means. 

3.2.1. Precipitation related climate extremes 
For R99p (Fig. 5a) and Rx1Day (Fig. 6) high correlations (r ~ 0.7) are 

observed between observations and N1.X ensemble members. For both 
the indices, small differences are observed between the correlations and 
standard deviation for individual N1.X ensemble members. Weak cor
relations (r = 0.3–0.5) are observed for all the other extreme precipi
tation indices (CWD, CDD, R10mm and PRCPTOT) (Figs. 5 and 6). For 
R10mm and PRCPTOT, N1.5 ensemble members are consistently closer 
to observations for DJF and MAM seasons (Fig. 6). For these indices, 
N1.0 simulations on average show a large spread and standard de
viations for the CSIRO-MK3.0 driven simulations. For CWD, N1.5 
ensemble members show a large spread and standard deviations for the 
CanESM2 driven simulations. 

3.2.2. Temperature related climate extremes 
For WSDI and CSDI (Fig. 7) moderate to weak correlations (r ~ 

0.4–0.5) are observed between observations and individual N1.X 
ensemble members. Also, for these indices, NARCliM ensemble members 
show large variability from the observations. For all other temperature 
extremes (DTR, TXge35, TXx and TNn) all ensemble members show 
strong correlations (r > 0.8) with the observations (Fig. 8). In addition to 
strong correlations, ensemble members show small variability between 

themselves and observations. 

3.3. Comparison of future projections in climate extremes 

Having assessed the performance of N1.5 simulations in comparison 
to the N1.0 ensemble members and observations for the historical period 
(1990–2009), we now focus on comparing N1.0 and N1.5 for the future 
projections. N1.5 has two overlapped future periods with N1.0, here we 
focus on the far future (2060–2079) to compare future projections in 12 
precipitation and temperature related extremes. As described earlier, 
N1.5 is designed to complement N1.0 simulations, therefore N1.X in
cludes a wider range of plausible future changes in precipitation and 
temperature of CMIP3 and CMIP5 ensemble (Fig. 2). For this reason, 
here we present future projections from N1.0, N1.5 and the combined 
N1.X ensembles. 

3.3.1. Precipitation related climate extremes 
Changes in six annual precipitation extremes for the far future are 

presented in Fig. 9. The N1.5 ensemble projects quite different changes 
in precipitation extremes from the N1.0 ensemble, even if there are some 
spatial similarities for each extreme. 

N1.0 projects significant increases in R99p for the whole domain, 
especially a larger increase for eastern regions along the Great Dividing 
Range (Fig. 9f). The large increase in R99p in N1.0 projection is mainly 
caused by three MIROC3.2-driven simulations which project more than 
60% increase in R99p (Table S6). In contrast, N1.5 project much smaller 
increase in R99p for the region along the Great Diving Range and 
decrease for most of the inland (Fig. 9l). All N1.5 simulations project 
similar magnitude of changes in R99p, with most simulations projecting 
an increase over Great Dividing Range (Table S6). 

Both N1.0 and N1.5 ensembles generally show future decreases in 
annual mean CWD (Fig. 9d, j) throughout the domain, especially for 
Victoria, although the changes are not significant for both ensembles. 
Large decreases in projected CWD in Victoria can be seen in most of N1.0 
simulations, except for the three ECHAM5 driven simulations. Similarly, 
decreases in CWD for the N1.5 ensemble mean are mostly determined by 
ACCESS1.3-driven simulations and ACCESS1.0-driven R2 (Table S6). 
For annual CDD (Fig. 9e, k), both N1.0 and N1.5 ensemble means show 
future increases over most of the domain. However, the increases in 
N1.5 ensemble mean are stronger when compared to N1.0 ensemble 

Fig. 5. Taylor diagrams comparing climatological mean R99p (left), CWD (central) and CDD (right) to the reference Australian Gridded Climate Data (AGCD) dataset 
at an annual timescale. Horizontal and vertical axes represent the spatial standard deviation; the outer circle represents the pattern correlation between each 
ensemble member and the reference dataset (AGCD); and the grey circles radiating from the bottom indicate centred root mean square errors. Models closer to the 
black star indicate a closer match to the reference dataset. Data spans 1990─2009. 
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mean. Also, CCCMA3.1- and MIROC3.2-driven simulations show future 
decreases in CDD (Table S6). 

Like R99p, N1.0 ensemble mean projects increases in Rx1Day for 
most of the domain (Fig. 9b). Significant increases in Rx1Day in Summer 
and Autumn contribute to the annual change, in contrast, there is little 
change in R1xDay in winter and spring (Fig. S8). The increase in Rx1Day 
in N1.0 is mostly attributable to the three MIROC3.2-driven simulations 
(Table S6). N1.5 projects slightly increases and decreases in Rx1Day for 
the eastern and inland regions, respectively. The increase in Rx1Day is 
mostly in Summer, and decrease is in other seasons, especially in Spring 
(Fig. S8). 

N1.0 ensemble mean projects similar future changes in R10mm and 
PRCPTOT (Fig. 9a, c), i.e. Decrease is in Victoria and increase elsewhere. 
The decrease is mostly in Spring but increase in Summer and Autumn 

(Figs. S9–10). The decrease can be observed in all N1.0 simulations even 
for MIROC3.2- and CCCMA3.1-driven simulations that project large 
increase in northern domain (Table S6). Similarly, N1.5 also projects 
similar decrease in R10mm and PRCPTOT (Fig. 9g, i). Similar to N1.0, 
the decrease is mostly in Spring (Figs. S9–10), which is mostly 
contributed by two ACCESS1.3-driven simulations and ACCESS1.0- 
driven R2 simulation (Table S6). 

N1.X projection covers the whole future change space of CMIP3 and 
CMIP5 (Fig. 2), which projects drier future ie. less annual total precip
itation (Fig. 9m), shorter wet period and longer dry period (Fig. 9p and 
q), and fewer days with more than 10 mm daily precipitation (Fig. 9o), 
however it projects larger Rx1Day and R99p (Fig. 9n and r). This implies 
that precipitation events will become more intense under the future 
climate conditions. 

Fig. 6. Taylor diagrams comparing climatological mean R10mm (top), Rx1Day (central) and PRCPTOT (bottom) to the reference Australian Gridded Climate Data 
(AGCD) dataset: annual (panel a), December-January-February (panel b), March-April-May (panel c), June-July-August (panel d) and September-October-November 
(panel e). Horizontal and vertical axes represent the spatial standard deviation; the outer circle represents the pattern correlation between each ensemble member 
and the reference dataset (AGCD); and the grey circles radiating from the bottom indicate centred root mean square errors. Models closer to the black star indicate a 
closer match to the reference dataset. Data spans 1990─2009. 
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3.3.2. Temperature related climate extremes 
In contrast to projections of precipitation extremes, N1.0 and N1.5 

generally project similar changes in temperature extremes, especially for 
TNn, TXge35, WSDI and CSDI (Fig. 10). 

Both N1.0 and N1.5 project future decreases (1–2 days) in annual 
mean CSDI (Fig. 10f, l). This is expected because of the consistent future 
increases in mean temperature. The strongest decrease in CSDI is pro
jected in the northern part of the domain. ECHAM5-driven N1.0 simu
lations, and ACCESS1.0- and ACCESS1.3-driven N1.5 simulations 
project the strongest future decreases in CSDI (Table S6). In contrast, 
both N1.0 and N1.5 project strong future increases in WSDI (~30–50 
days) (Fig. 10e, k). N1.5 ensemble members generally show larger 
projected increases in annual mean WSDI than N1.0, which is likely due 
to hotter GCMs used in N1.5 simulations than those in N1.0. All simu
lations in N1.0 and N1.5 generally project similar pattern of future 
changes with larger increase in northern domain and along Great 
Dividing Range (Not shown). 

For DTR, stronger future changes are projected in the spring 
(September-October-November) for N1.0 (Fig. S11). However, N1.5 
ensemble mean, and individual simulations show future increases in 
DTR, even if the simulated changes are not statistically significant 
(Fig. S11). 

Both N1.0 and N1.5 project strong future increase in TXx and TNn 
both annually (Fig. 10 a, g, b, h) and for all seasons (Figs. S12–13). The 
projected changes are typically stronger for TXx (~3–4 ◦C) than for TNn 
(~1–2 ◦C), however, changes in TXx are not statistically significant 
(Fig. S12). In contrast, both TNn ensemble mean and each simulation in 
N1.0 and N1.5 project significant increase (Fig. S13). 

For TXge35, both N1.0 and N1.5 show strong future increases 
(Fig. 10d, j). The strongest increases are projected in Summer and the 
weakest increases in winter (Fig. S14). All simulations in N1.0 and N1.5 
project similar change pattern with larger increase in the northern 
domain (Not shown). 

Generally, N1.5 projects stronger changes in temperature extremes 
than N1.0. This can be partially attributed to hotter CMIP5 GCMs used in 
N1.5 (Fig. 2). Meanwhile, simulations which project larger increases/ 
decreases in precipitation extremes, also generally project smaller/ 
larger increases in temperature extremes. 

Overall, N1.X projects longer warm (WSDI) and shorter cold (CSDI) 
periods, higher maximum and minimum temperature (TXx, TNn), more 
extreme hot days (TXge35), and larger daily temperature range (DTR). 

4. Discussion 

In this study, we evaluated 12 climate extremes for the N1.0 and 
N1.5 ensembles. The evaluation indicates both N1.0 and N1.5 over
estimate wet climate extremes, especially for inland Australia and along 
Great Dividing Range in eastern Australia. In contrast they significantly 
under-estimate dry climate extremes. We also observed that, for some 
temperature related extremes such as TXx, DTR, TXge35, both N1.0 and 
N1.5 show strong cold biases. 

As discussed in Nishant et al. (2021), wet and cold bias in N1.0 and 
N1.5 simulations might be related to the unified Noah land surface 
scheme used in those simulations (Olson et al., 2016; Ji et al., 2016). The 
unified Noah land surface scheme often overestimates soil moisture 
(Zhou et al., 2019), which results in more evapotranspiration over land 
surface that leads to more rainfall and a cooler surface (Liu and Pu, 
2019). As a part of future work, we have included other land surface 
models such as Noah-MP and CLM in the selection of RCMs for the third 
generation of NARCliM (N2.0) (Di Virgilio et al., in preparation), which 
will overcome most of the limitation of the combined N1.0 and N1.5 
ensemble. 

Previously, strong negative correlations were observed between 
mean monthly precipitation biases and mean monthly maximum tem
perature biases across Australia, including the present study area (Di 
Virgilio et al., 2019a). This could suggest overestimation in wet ex
tremes is a likely cause of the large cold bias in some temperature ex
tremes. Multiple studies have indicated that some of the precipitation 
biases in N1.0 simulations are inherited from the driving GCMs (Di Luca 
et al., 2016a; Olson et al., 2016). Another reason for wet biases in N1.0 
and N1.5 simulations can be related to different physics schemes used in 
the WRF model. Our results show that R2 simulation generally has much 
smaller biases than R1 (used in N1.0 and N1.5) and R3 (used in N1.0 
only) for multiple wet extremes such as R99p, Rx1Day, and PRCPTOT. 

Some uncertainties in observations might also contribute to the 
biases in the results. The observation AGCD was interpolated from the 
unevenly distributed weather monitoring sites. There are substantially 
fewer monitoring sites over the Great Dividing Range and inland areas, 
which result in large uncertainties in estimated observed precipitation 
over those areas. Chubb et al. (2016) used an independent gauge 
network to evaluate AGCD precipitation over Australian Snowy Moun
tains (part of Great Dividing Range) and identified that daily precipi
tation is under-estimated by at least 15%. This suggests that the true 
biases in N1.0 and N1.5 over the Great Dividing Range may be smaller 

Fig. 7. Taylor diagrams comparing climatological 
mean CSDI (left) and WSDI (right) to the reference 
Australian Gridded Climate Data (AGCD) dataset at 
an annual timescale. Horizontal and vertical axes 
represent the spatial standard deviation; the outer 
circle represents the pattern correlation between each 
ensemble member and the reference dataset (AGCD); 
and the grey circles radiating from the bottom indi
cate centred root mean square errors. Models closer 
to the black star indicate a closer match to the 
reference dataset. Data spans 1990─2009.   
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than presented here. Similarly, for the north-western inland area, using 
limited gauge stations to generate gridded data might miss many 
extreme precipitation events, which are often localized. 

In terms of comparisons between N1.0 and N1.5, the wet climate 
extremes simulated in N1.5 show smaller biases than N1.0, especially in 
Summer. The dry extreme (CDD) and temperature extremes in N1.5 
generally show comparable results with N1.0. The smaller bias in N1.5 
simulations is again attributed to the driving GCMs in N1.5 simulations, 
most of which show smaller biases than the driving GCMs in N1.0 
simulations. Available studies have suggested that the finer scales of the 

CMIP5 GCMs leads to more accurate estimation of precipitation than 
CMIP3 models (Gulizia and Camilloni, 2015). It has always been a 
challenging task for models to simulate precipitation accurately (Li 
et al., 2016; Potter et al., 2020). N1.5 simulations show a substantial 
improvement in capturing the seasonal patterns and magnitudes of 
precipitation extremes. These results indicate that N1.5 simulations are 
an improvement on the earlier N1.0 in simulating the historical climate, 
at least for precipitation extremes. 

Future projections of precipitation extremes in N1.0 and N1.5 sim
ulations show contrasting results. These major differences can be partly 

Fig. 8. Taylor diagrams comparing climatological mean DTR, TXge35, TXx, and TNn to the reference Australian Gridded Climate Data (AGCD) dataset: annual (panel 
a), December-January-February (panel b), March-April-May (panel c), June-July-August (panel d) and September-October-November (panel e). Horizontal and 
vertical axes represent the spatial standard deviation; the outer circle represents the pattern correlation between each ensemble member and the reference dataset 
(AGCD); and the grey circles radiating from the bottom indicate centred root mean square errors. Models closer to the black star indicate a closer match to the 
reference dataset. Data spans 1990─2009. 
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explained by the driving GCMs in N1.0 and N1.5 simulations. The 
ensemble mean of CMIP5 GCMs in N1.5 is drier than that of CMIP3 
GCMs in N1.0 (Fig. 2), which result in much smaller increase or even 
decrease in wet extremes in N1.5 precipitation extreme projections. The 
spatial patterns of future changes in temperature extremes are found to 
be comparable in N1.5 and N1.0 simulations. Both sets of simulations 
project future warming throughout the domain, however the magnitude 
of changes in temperature extremes is found to be stronger in N1.5 
simulations. This is understandable, as CMIP5 GCMs used in N1.5 sim
ulations are hotter than those CMIP3 GCMs in N1.0 (Fig. 2). 

This paper also presented combined results of N1.0 and N1.5 (N.1X) 
for the future climate extreme projections. N1.X projections demon
strate the complementary utility of N1.5 with the original N1.0 and the 
underlying objective that N1.5 simulations do not replace N1.0 simu
lations, rather, these updated and enhanced simulations complement 

N1.0 simulations by expanding the future change space covered by the 
simulations. Compared to CMIP3 GCMs, a number of CMIP5 GCMs 
projected a hotter and drier future expanding the future change space of 
the CMIP3 GCMs (Fig. 2). Together N1.0 and N1.5 provide a more 
complete sampling of this combined future change space. However, it 
should be noted that N1.0 and N1.5 are driven by GCMs from different 
generation of CMIP, and emission scenarios used in N1.0 and N1.5 are 
not the same. There is constraint/limitation when N1.0 and N1.5 are 
combined as N1.x. 

These projected results suggest more intense climate extremes in the 
future. The findings are aligned with other studies. For an example, Bao 
et al. (2017) used NARCliM1.0 to assess future changes in extreme 
precipitation and found future increase in extreme precipitation exceed 
observed scaling rate. Other studies also confirmed that changes in 
extreme precipitation is much larger than 7% per degree warming 

Fig. 9. Change in annual climatological mean precipitation extremes between 1990─2009 and 2060─2079. Future time periods are based on the SRESA2 and 
RCP8.5 emission scenarios for N1.0 and N1.5, respectively. The N1.0 ensemble mean change (top panel a–f), N1.5 ensemble mean change (central panel g–i), and N1. 
x ensemble mean change (bottom panel m–r). Stippling indicates statistically significant change using a student’s t-test at the 95% confidence level. 

Fig. 10. Change in annual climatological mean temperature extremes between 1990─2009 and 2060─2079. Future time periods are based on the SRESA2 and 
RCP8.5 emission scenarios for N1.0 and N1.5, respectively. The N1.0 ensemble mean change (top panel a–f), N1.5 ensemble mean change (central panel g–i), and N1. 
x ensemble mean change (bottom panel m–r). Stippling indicates statistically significant change using a student’s t-test at the 95% confidence level. 
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(Fischer and Knutti, 2015). Therefore adaptation, resilience and miti
gation strategies must anticipate these plausible changes in future 
climate extremes. For example, significant increase in hot extremes will 
enlarge heatwave exposure for Australian especially for elderly popu
lation (Nishant et al., 2022). The future projections of hot extremes are 
critical for planning where adaption measures might be necessary to 
copy with heatwave exposure such as improvements in infrastructure 
including housing and air conditioning, together with socioeconomic 
changes and better health care and service. Significant increase in CDD 
(consecutive dry days) and decrease in CWD (consecutive wet day) 
together with higher temperature are expected to exacerbate the pres
sure on food production. Projection of climate extremes are important 
for agricultural predictions and adaptation planning, which provides an 
overview of critical regions that are most susceptible to variations in 
growing season climate and climate extremes (Vogel et al., 2019). In
crease in extreme rainfall will significantly impact rainfall erosivity that 
can cause substantial hillslope erosion and land degradation (Zhu et al., 
2019). The projections of rainfall extremes will help to take necessary 
adaption measures to minimise the impacts such as land use planning 
and development of cost-effective erosion control practices. 

The uncertainties from emission scenarios and GCMs can be reduced 
by dynamically downscaling GCMs but cannot be totally removed (Ning 
et al., 2012). Some uncertainties are also attributable to RCMs and pa
rameterizations within the models. Therefore, we would like to remind 
readers to be aware of the uncertainties in the study when they use 
projections to undertake impact assessments and future planning. 

Understanding the dynamics/thermodynamic components behind 
future changes in climate extremes is limited. Some studies indicated 
changes in precipitation extremes are possibly due to changes in syn
optic patterns and available moisture (Bao et al., 2017; Li et al., 2018), 
poleward shift of subtropic ridge and SAM (Southern Annual Modes) 
might cause more temperature extremes such as heatwaves (Perkin
s-Kirkpatrick et al., 2016). Relationships between some climate ex
tremes and large-scale and synoptic variability have been identified. 
However, more research is required to further our understanding of the 
dynamical interactions of climate extremes. 

5. Conclusions 

This paper evaluates and compares skills of 12 simulations in NAR
CliM1.0 and six simulations in NARCliM 1.5 to capture 12 precipitation 
and temperature extremes for Southeast Australia. The results of this 
study show that N1.5 ensemble is better in capturing the spatial patterns 
of precipitation extremes than N1.0. Biases of R10mm, Rx1Day and 
PRCPTOT in N1.5 are substantially smaller than those in N1.0, espe
cially during summer. Overall, ensemble means for N1.5 are similar to 
N1.0 for temperature extremes. Both ensembles underestimate hot ex
tremes (TXx and TXge35) and daily temperature range but overestimate 
cold extremes (TNn). 

This paper also presents future projections of 12 climate extremes for 
N1.0 and N1.5 under high emissions scenarios. We show that N1.0 and 
N1.5 project different spatial patterns of future changes in precipitation 
extremes but similar patterns of changes in temperature extremes. Those 
differences in climate extremes between N1.0 and N1.5 are partially 
related to differences between the driving GCMs. The combined future 
projections of both N1.0 and N1.5 (N1.X) are also provided, which 
provides a more complete sampling of the future change space. How
ever, there are some limitations of combining CMIP3 SRES A2 and 
CMIP5 RCP8.5 projections due to variations in the driving emissions. 

N1.X projects drier future: i.e., less annual total precipitation 
(PRCPTOT), shorter wet period (CWD) and longer dry period (CDD), and 
fewer days with more than 10 mm daily precipitation (R10mm), how
ever, it projects larger R99p and Rx1Day. N1.X also projects hotter 
future, ie. longer warm period (WSDI) and shorter cold period (CSDI), 
higher maximum and minimum temperature (TXx, TNn), more extreme 
hot days (TXge35), and larger daily temperature range (DTR). This 

implies that precipitation and temperature extremes will get more 
intensive under the future drier and hotter conditions. 

The results of this study have broad implications for important 
decision-making processes in the context of climate change adaptation. 
The outcomes of this work form a baseline for short-, medium- and long- 
term responses to climate extremes and the facilitation of effective and 
responsive climate-resilient planning across south-east Australia. 
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